GRID RESILIENCE REPORT | DISCLAIMER

Disclaimer

This document: (a) is proprietary and confidential to Baringa Services Ltd ("Baringa") and could not be disclosed to or relied upon by any third parties or re-used without Baringa's consent; (b) shall not form part of any contract nor constitute acceptance or an offer capable of acceptance; (c) excludes all conditions and warranties whether express or implied by statute, law or otherwise; (d) places no responsibility or liability on Baringa or its group companies for any inaccuracy, incompleteness or error herein; and (e) is provided in a draft condition "as is" without warranty. Any reliance upon the content shall be at user's own risk and responsibility. If any of these terms is invalid or unenforceable, the continuation in full force and effect of the remainder will not be prejudiced.

Copyright © Baringa Services Limited 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information. No part of this document may be reproduced without the prior written permission of Baringa Services Limited.

This report has been prepared by Baringa Services Ltd or a Baringa group company ("Baringa") specifically for the client named in this report ("Client") for the sole purpose of assisting the consideration of Client or interested investors ("Investors") in the potential transaction named in this report ("Transaction").

This report does not constitute a personal recommendation of Baringa or take into account the particular investment objectives, financial situations, or needs of Client or the Investors in relation to the Transaction. Client and Investors could consider whether the content of this report is suitable for their particular circumstances and, if appropriate, seek their own professional advice and carry out any further necessary investigations before deciding whether or not to proceed with the Transaction. This report could not, under any circumstances, be treated as a document containing complete and accurate information sufficient to make an investment decision. It is the responsibility of the Client and Investors to conduct such due diligence as necessary of any risk factors not identified in this report or which could affect the operation, financial standing and further development prospects of any assets being acquired, charged or sold in the Transaction. Baringa shall not be liable in any way for errors or omissions in information contained in this report based upon publicly available industry data or specific information provided by others (including Client, its affiliates, their advisers, target entity or any third parties). Baringa makes no representations or warranties (express or implied) concerning the accuracy or completeness of the information contained in this report, nor whether such information fully reflects the actual situation described in this report, and all conditions and warranties whether express or implied by statute, law or otherwise are excluded.

Information and data contained in this report is confidential and must not be disclosed to third parties by Client or Investors except as permitted in the relevant Client contract with Baringa or with the written consent of Baringa. This report may not be used in any processes involving the public offering in which shares of stock in a company are sold either privately or on a securities exchange. No part of this Report may be copied, photocopied or duplicated in any form by any means or redistributed (in whole or in part) except as permitted in the relevant Client contract with Baringa or with the written consent of Baringa. Copyright © Baringa Services Ltd 2024. All rights reserved.

Grid Resilience Reports

Wyoming

Energy & Resources | Networks 12/06/2024

Table of contents

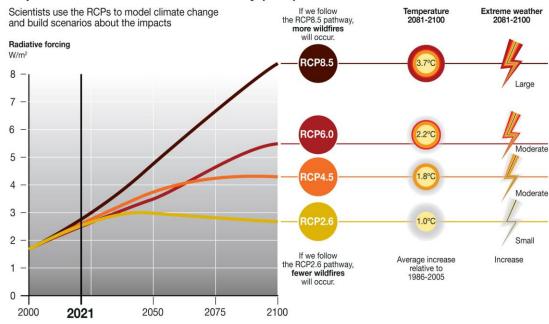
Project Context	
 Project Context & Approach 	4-6
Deliverable Overview	
Climate Science Background	8
Data Sources	9-11
 Analysis Approach 	12
Grid Resilience Report	
 Assets Class Overview 	13-15
 Wildfire 	16-19
• Flood	20-22
• Wind	23-26
• Heat	27-31
• Cold	32-35
• Drought	36-38
Precipitation	39-40

Grid Resilience Reports

Climate Science Background, Data Sources, and Analysis Approach

RCPs and SSPs provide viable climate pathways for an uncertain future

ipcc


Generating Emission Scenarios

- Representative concentration pathways (RCPs) project GHG concentrations: Defined by the IPCC in 2014 as scenarios of future emission concentrations and other radiative forcing that align to climate projections. 1 RCPs use assumptions relating to policy decisions and individual behavior that may change future GHG emissions concentrations. 1 SSPs have largely replaced RCPs.
- Shared socioeconomic pathways (SSPs) provide 5 'storylines' to contextualize RCPs and to provide the various future pathways possible.² They consider how the world could evolve socioeconomically and politically, including how various levels of climate change mitigation and adaptation could be achieved and will influence future climate scenarios.3
- RCPs included in the CLIMRR dataset include RCP 4.5 and RCP 8.5.
- SSPs included in the Hydrosource dataset include SSP585, SSP370, SSP245, and SSP126.

Modeling Scenario: RCP 4.5

- "Moderate" scenario: Emissions peak around 2040 and then slowly begin to decline.⁴ Temperatures warm about 3.2 °F from a 2000 baseline.⁵
- CO2 emissions plateau before falling mid-century, as energy use sharply declines and there is large scale reforestation. 6

Representative Concentration Pathway (RCP)

GRID-Arendal/Studio Atlantis, 2021

Modeling Scenario: RCP 8.5

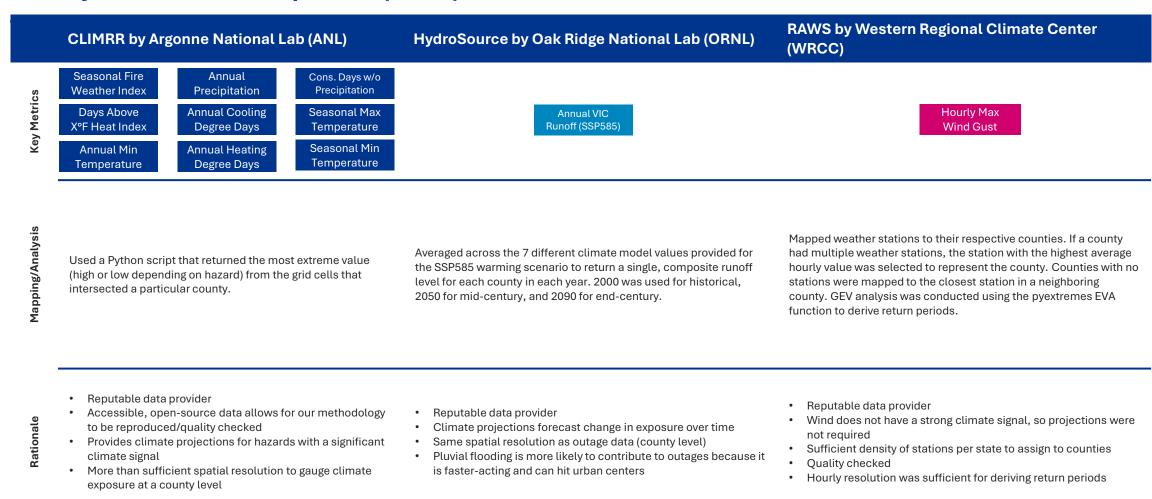
- "Rapid growth" scenario: Emissions continue to rise throughout the twenty-first century.4 Temperatures warm about 6.6 °F from a 2000 baseline. 5
- CO2 emissions are three times higher than the present by end-century, with a large increase in methane emissions and continued fossil fuel use. 6

¹ Source: ComEd Vulnerability Study 2023 ⁴ Source: Help (cal-adapt.org)

² Source: Jupiter

³ Source: Carbon Brief

⁵ CoastAdapt


⁶ Climate Copernicus

Baringa leverages national downscaled climate datasets with high granularity to assign county-level climate exposure

	CLIMRR by Argonne National Lab (ANL)	HydroSource by Oak Ridge National Lab (ORNL)	RAWS by Western Regional Climate Center (WRCC)
Dataset Description	The Climate Risk and Resilience Portal (CLIMRR) provices highly localized climate projections from mid- to end-century using a supercomputer to model 60 climate variables.	HydroSource is a comprehensive national water energy digital platform consisting of hydropower-related data set, models, visualizations, and analytics tools.	The Wildland Fire Remote Automated Weather Stations (RAWS) data set provided by WRCC is a quality-controlled repository of hourly data for 17 select weather metrics from a network of weather stations across western states.
Data Provider Description	Argonne National Lab is a federally-funded science and engineering research center sponsored by the Department of Energy.	Oak Ridge National Lab is a federally funded research and development center sponsored by the Department of Energy.	The Western Regional Climate Center is one of 6 Regional Climate Centers in the United States. WRCC works jointly with NOAA to coordinate climate activities and conduct applied research on climate issues in the West.
Years	Historical, Mid-Century, End-Century	1980-2099	2000-2022
Spatial Resolution	12 km (aggregated to county)	County	Weather station (aggregated to county)
Hazards	RAIN FIRE HEAT COLD DROUGHT	FLOOD	WIND

Baringa leverages national downscaled climate datasets with high granularity to assign county-level climate exposure (cont.)

Baringa is leveraging forward-looking climate projections to inform its technical assistance work for states in WECC

Wind

Source: Western Regional Climate Center (WRCC)

Input metric: Hourly max wind

speed (mph)

Output: Wind speed at key return

periods via GEV distribution

Wildfire

• Source: CLIMRR (ANL)

Input metric: Fire weather index

(FWI) by grid cell

Output: Maximum fire weather

index by county

Precipitation

Source: CLIMRR (ANL)

Input metric: Annual total precipitation (in/year) by grid cell

Output: Max annual total

precipitation (in/year) by county

Drought

Source: CLIMRR (ANL)

Input metric: Consecutive days with no precipitation by grid cell **Output:** Max consecutive days with no precipitation by county

Heat

Source: CLIMRR (ANL)

Input metrics:

- Days above 95, 105, 115, 125 °F
- Annual cooling degree days
- Seasonal maximum temperatures

Output: Input metrics applied from a grid cell level to a county level

Cold

Source: CLIMRR (ANL)

Input metrics:

- · Annual minimum temperature
- Annual heating degree days
- Seasonal minimum temperatures

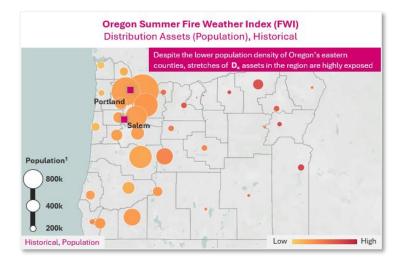
Output: Input metrics applied from a grid cell level to a county level

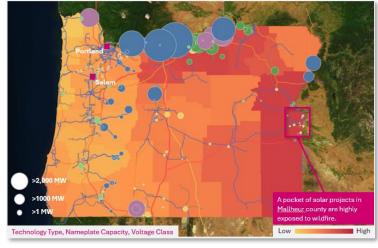
Flood

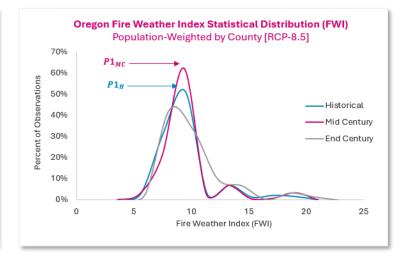
Source: Hydrosource (ORNL)

Input metric: Annual Variable Infiltration Capacity (VIC) model

runoff (mm/year)


Output: Average annual VIC runoff for 4 warming scenarios and 3 time periods (historical, mid-century, end-century)


This report is standardized to include a 3 different data visualizations that provide insights for Distribution, Transmission, and Generation across 7 extreme weather hazards


Distribution Maps

Transmission & Generation Maps

Statistical
Distribution Graphs

- Purpose: Uses population as proxy for volume of distribution assets given that the location of distribution assets is restricted.
- Interpretation*: Locate areas of high exposure by identifying counties with coincident large bubbles and dark colors. This indicates a combination of high volume of Dx assets and significantly high extreme weather projections.
- **Purpose:** Overlays transmission and generation assets on climate projections by county.
- Interpretation: Locate areas of high exposure by identifying assets in counties of high risk. Exposure differs by asset class and will be highlighted in Key Insights tables throughout.
- Purpose: Contains statistical insights related to each metric. Indicates change in dispersion and severity of risk over time on average
- Interpretation: A change in the width of the peak indicates a decrease in concentration of exposure., meaning more counties are exposed to more severe weather. A shift right in the curve indicates that on average, the all counties are experiencing more severe weather.

^{*}Note: Analysis addresses risk given volume of assets and does not account for risk to remote customers at end of radial distribution grids.

Asset Class Overviews

Summary

WEA could consider funding a diverse set of projects aside from undergrounding, including vegetation management projects, Dx pole upgrades

Key Takeaways

- Consider emergency response and funding Tx and Dx hardening across the state given relatively evenly distributed levels of wildfire exposure.
- Explore DER programs to reduce reliance on large thermoelectric assets susceptible to derating and consider funding substation upgrade in NE counties.
- Prioritize Tx and Dx hardening in NW counties where sub-freezing annual minimum temperatures persist despite statewide warming.

			6 · · · · · · · · · · · · · · · · · · ·				
Hazard	Exposure	Change to Mid- Century	Generation	Transmission & Distribution	AWPI	Description	
FIRE	Н		 Consider further investment in emergency response and fossil generator fortification WEA could encourage wildfire mitigation planning or fund additional access road upgrades to shorten restoration times. Consider initiatives to mitigate fire spread from flammable fuel stockpiles. 	 Consider balancing Tx and Dx investment between well-populated and rural counties Relatively evenly distribute fire exposure indicates WEA could split Dx hardening between radial lines and dense pockets of Dx assets. HV lines in SW counties are mostly export lines, but could be prioritized for hardening given their exposure and revenue 	М	Gen: No proposals address generator exposure. WEA could consider hardening operational facilities. T&D: Undergrounding and access road upgrades align with exposure, but WEA could also consider vegetation management or Dx pole upgrades.	
HEAT	М	1	Explore funding DERs to offset derating of supply and enhance flexibility DERs could reduce reliance on large, highly exposed thermoelectric generators that will derate during extreme heat events.	 Consider substation upgrades in NE counties and more cost-effective Tx hardening methods Exposure to days >105 °F in NE could warrant transformer health monitoring software. Widespread heat exposure necessitates options like reconductoring, GETs, or vegetation to mitigate effects of derating risk. 	М	Gen: No proposals address generator exposure or propose DERs. T&D: Undergrounding and reconductoring address heat, but WEA could also consider vegetation management and dynamic line rating (DLR) to combat line sag and derating.	
COLD	Н	•	Focus weatherization technologies on heavily exposed thermoelectric assets Coal assets in Converse and Albany Counties are particularly exposed to cold and could be hardened to avoid startup failure or derating.	 Prioritize Tx and Dx hardening in NW counties, where sub-freezing annual minimums persist Despite warming, Dx assets in NW counties are exposed to freezing temps. for much of the year. MV lines in Fremont County could be prioritized for hardening given extreme cold exposure. 	М	Gen: No proposed awards address generator cold exposure. T&D: Undergrounding projects address cold exposure, but most hardening projects appear geared towards fire.	

^{*} AWPI = Alignment with proposed investment

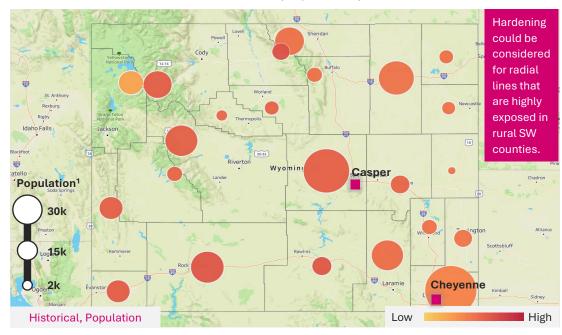
WEA could prioritize substation fortification in NW counties exposed to flood and wind-related hardening in SE and NW counties.

Key Takeaways

- WEA could consider funding substation fortification and Dx pole upgrades in NW counties that are heavily exposed to flooding.
- Consider hardening for SE generating facilities and Tx structure and Dx pole upgrades in SE and NW counties to address wind exposure.
- Explore the potential to address exposure to multiple climate hazards simultaneously through innovative thermoelectric cooling and solar O&M projects.

Hazard	Exposure	Change to Mid- Century	Generation	Transmission & Distribution	AWPI	Description
≈ FLOOD	L		Generators are generally not significantly exposed to flood Thermoelectric generators are exposed in Lincoln County, which could inundate critical auxiliary equipment and contribute to plant failure.	 WEA could prioritize substation fortification Pockets of HV substations are heavily exposed to flooding in NW counties, which can cause direct failure. WEA could also consider upgrades to aging or weak Dx poles in the NW region. 	L	Gen: Lack of exposure makes this a lower priority for investment. T&D: No projects targeting substations, unaligned with the significant substation exposure.
WIND	М	>	 Consider hardening for SE generating facilities WEA could encourage SE wind farms to procure turbines with higher cutout speeds. Cooling tower hardening could combat wind-related derates at Laramie River Station. 	 WEA could consider Tx structure and Dx pole upgrades In SE and NW counties WEA could reinforce Tx structures for crucial import/export lines in SE counties. Harden Dx poles in mountainous NW towns. 	М	Gen: No projects addressing generator exposure. T&D: Undergrounding addresses wind, but WEA could also consider Dx pole and Tx structure upgrades.
₩	М	•	 WEA could explore water conservation measures for water-based cooling methods. Water scarcity can cause curtailments and emissions increases for coal and natural gas. Drought conditions can cause dust buildup on solar panels, hurting capacity factors. 	Drought exposure does not have a material impact on transmission and distribution assets	L	Gen: No projects addressing generator drought exposure. WEA could consider that advanced cooling and panel cleaning projects address both drought and heat/fire simultaneously.
RAIN	М	1	Consider the impact of increased precipitation and other conditions on hydro output • Consider the possibility of more frequent extreme rainfall and changing snow patterns.	Precipitation exposure does not have a material impact on transmission and distribution assets	М	Gen: WEA could consider whether enhanced data collection is more effective in addressing precipitation exposure than physical hardening.

^{*} AWPI = Alignment with proposed investment

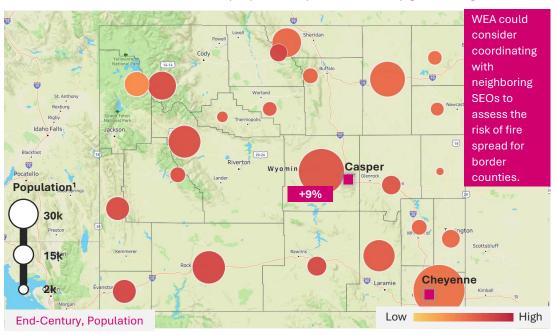

Wildfire

Asset Analysis

Since fire exposure is generally evenly distributed throughout the state, WEA could consider balancing fire mitigation investment between rural radial lines and dense pockets of Dx assets

Wyoming Summer Fire Weather Index (FWI)

Distribution Assets (Population), Historical



KEY OBSERVATIONS

- Wildfire exposure is generally evenly distributed throughout the state but tends to be most concentrated in SW counties.
- Big Horn County faces peak statewide wildfire exposure.
- Undergrounding proposals address wildfire exposure, but WEA could also consider pole wrapping or wildfire mitigation planning.

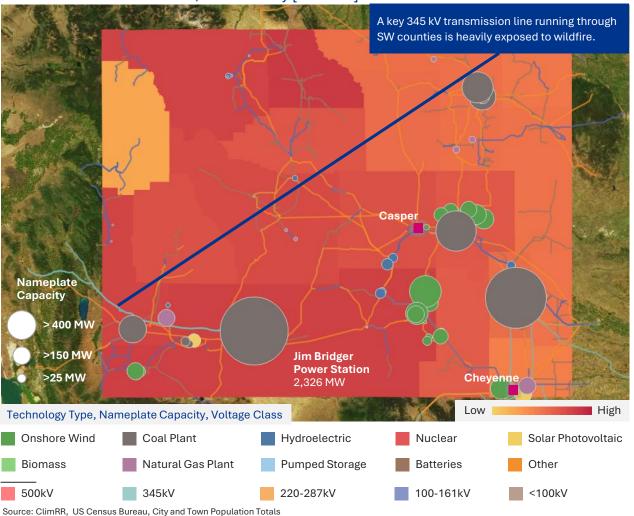
Wyoming Summer Fire Weather Index (FWI)

Distribution Assets (Population), End-Century [RCP-8.5]

KEY OBSERVATIONS

 FWI increases by about 2-6 points across the state, demonstrating the importance of utilizing forward-looking climate projections for statewide fire mitigation planning.

Natrona County is relatively well-populated and faces high wildfire exposure, **posing a threat to a high density of Dx assets.**

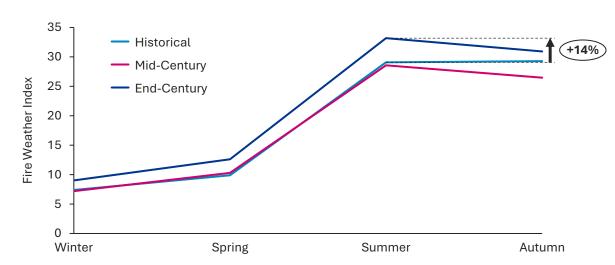


¹⁴ Copyright © Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

WEA could prioritize transmission hardening, asset access projects, and thermoelectric fortifications in SW counties to address escalating wildfire exposure

Wyoming Summer Fire Weather Index (FWI)

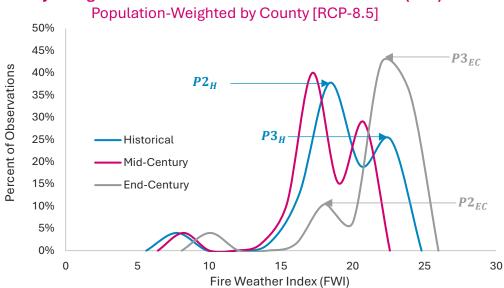
Generators & Transmission, Mid-Century [RCP-8.5]


Key Highlights Analysis HV Tx lines in Sweetwater and Lincoln **Counties** are heavily exposed to wildfire. 宫 A key 345kV import/export line connecting Wyoming to Idaho is highly exposed to **Transmission** wildfire, which could be prioritized for hardening given its crucial role during extreme weather events. • Wildfire causes ingress/egress issues through destruction of roads and transportation, slowing restoration times for all assets. • The 40101(d) proposal including access road Restoration upgrades could serve as a blueprint for future projects to combat wildfire-related access issues. Jim Bridger Generating Station in Sweetwater County is highly exposed to wildfire. Flammable fuel stockpiles can accelerate **Thermoelectric** fire spread if not fortified.

^{15 |} Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

Wildfire exposure appears relatively unchanged by mid-century, but could increase in severity and spatial extent by end-century, posing a more acute threat to a wider range of assets

Wyoming Average Seasonal Fire Weather Index (FWI)


Population-Weighted by County [RCP-8.5]

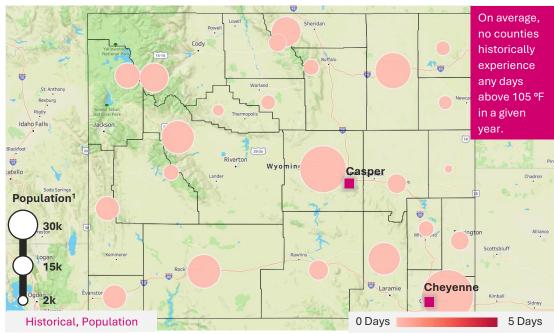
KEY OBSERVATIONS

- End-century wildfire exposure is elevated, with the sharpest increase occurring between spring and autumn by about 14% from historical FWI.
- Elevated wildfire exposure around the summer suggests a shift of peak wildfire exposure earlier in the year, a lengthening of the wildfire season, and an increase in severity.
- The change in length of wildfire season suggests that the window for scheduled maintenance during the shoulder seasons is diminishing.

Wyoming Fire Weather Index Statistical Distribution (FWI)

KEY OBSERVATIONS

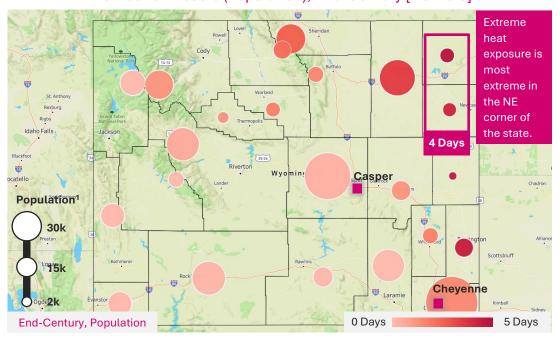
- Rightward and upward shift of the curve by end-century demonstrates an increase in wildfire.
- The inversion of P2 and P3 indicates a much wider spatial extent exposed to peak FWI by end-century compared to historical.
- Leftward shift of the mid-century curve indicates that fire exposure may decrease slightly in the near-term, although increases in fire exposure for neighboring states may counteract this apparent decrease.



Heat

Asset Analysis

WEA could consider Dx upgrades addressing extreme heat in NE counties to mitigate asset degradation, derating, and potential failure given escalating exposure over time


Wyoming Days Above 105 °F
Distribution Assets (Population), Historical

KEY OBSERVATIONS

- Currently T_x and D_x assets have no exposure to days above 105 °F.
- 105 °F is a particularly important threshold for distribution assets and substations, which can fail when exposed to two consecutive days above 104 °F.²

Wyoming Days Above 105 °F
Distribution Assets (Population), End-Century [RCP-8.5]

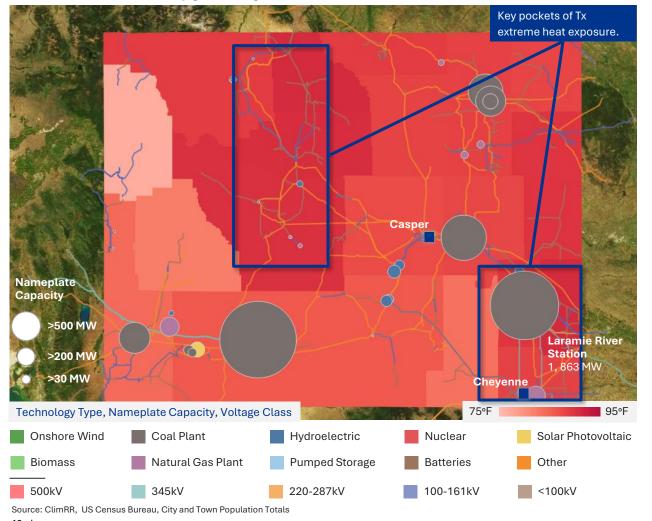
KEY OBSERVATIONS

 Eastern counties are expected to face about 1-5 days >105 °F annually, causing high asset utilization, derating, and potential failure.

Crook County

Crook County will face over 4 days >105 °F by endcentury, exposing Dx substation assets in the county to derating and potential failure.

Source: ClimRR, US Census Bureau, City and Town Population Totals


¹Population bubbles are continuous and therefore labels are approximate. ²EPRI Climate READi

^{18 |} Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information.

WEA could consider additional investments to combat thermoelectric production and transmission capacity derates due to extreme heat given escalating exposure over time

Wyoming Summer Average Maximum Temperature (°F)

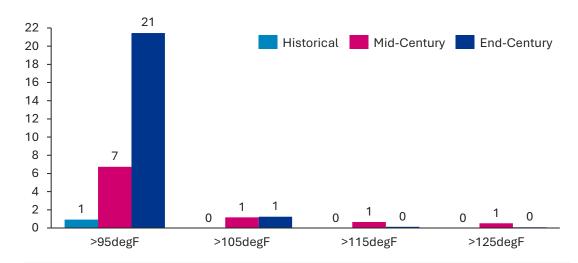
Generators, Mid-Century [RCP-8.5]



Key Highlights	Analysis
-	 Laramie River Station in Platte County is highly exposed to extreme heat, as are natural gas assets in Laramie and Campbell Counties.
Thermoelectric	 Thermoelectric generators that rely on water-based cooling methods will experience production derates as extreme heat raises average water temperatures.
	 WEA could consider funding DERs to combat thermal derating of large generators.
	A significant portion of transmission lines are exposed to high levels of extreme heat in the central and SE regions of the state, which can cause capacity derates and line sag.
Transmission	 Undergrounding proposals address these issues, but WEA could consider more cost- effective adaptations like reconductoring or vegetation management to address exposure over longer distances.

^{19 |} Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

Days above 95 °F are projected to increase drastically over time, making derating and capacity violations key issues for CEO to prioritize

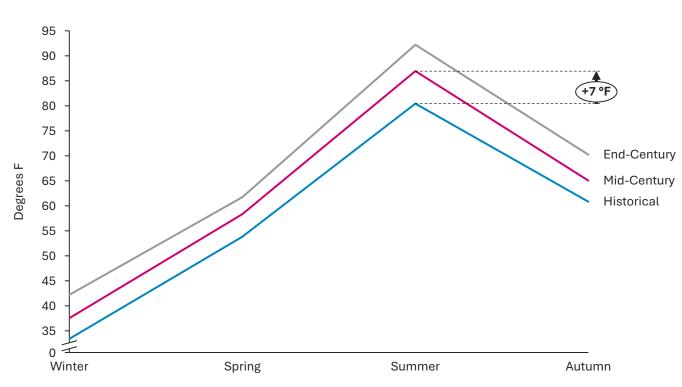

Wyoming Average Annual Cooling & Heating Degree Days (CDD & HDD) Population-Weighted by County [RCP-8.5]

KEY OBSERVATIONS

- Between historical and mid century, the ratio of CDD to HDD increases, with the share of average number of CDD jumping from about 7% to 13% across historical and mid-century.
- This results in increased summer asset utilization and degradation, but impacts to winter utilization remain unclear depending on heating electrification trends.
- WEA could be mindful of the impact of heating electrification on peak load given significantly higher HHD levels than CDD levels.

Wyoming Average Annual Days Exceeding Daily Max Heat Index Thresholds Population-Weighted by County [RCP-8.5]

KEY OBSERVATIONS


- 7x increase in days with heat index >95 °F by mid-century demonstrates an
 increase in peak load and will likely contribute to derating and capacity
 violations for transmission and thermal generating units.
- Significant increase in days > 95 °F by end-century could cause an increase in asset utilization, decreasing asset lifespans.
- Utilities could prioritize planning for temperatures between 95-105 °F, making derating a higher priority than asset failure.

Average summer temperature maximums are projected to increase by mid-century, increasing the duration and magnitude of high system utilization

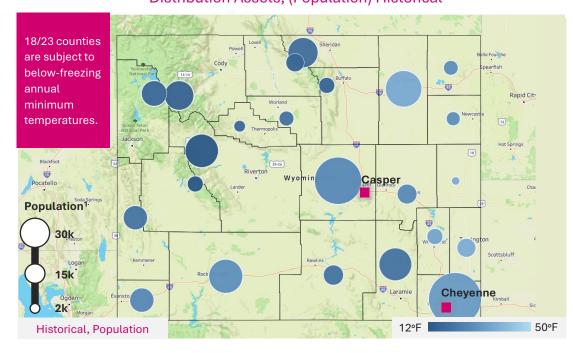
Wyoming Average Seasonal Maximum Temperature (°F)

Population-Weighted by County [RCP-8.5]

Key Highlights Analysis

Heat risk increases most drastically in summer, with a 7 °F increase in the average seasonal max temperatures by mid-century, increasing system utilization and degradation.

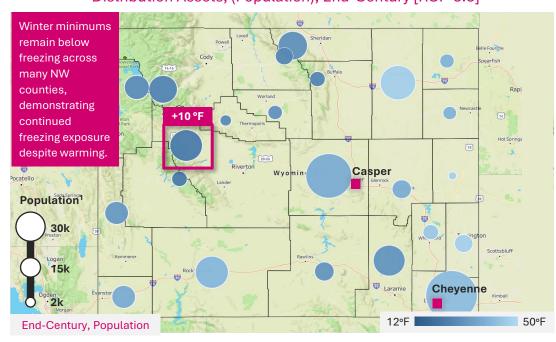
Shorter Shoulder Seasons Less pronounced warming in shoulder seasons, although increased autumn maximums could extend the duration of high system utilization and shorten maintenance windows.



Cold

Asset Analysis

NW counties continue to face high extreme cold exposure year-round, prompting consideration of Dx hardening to mitigate line freezing and strengthen poles in these regions.


Wyoming Average Annual Minimum Temperature (°F) Distribution Assets, (Population) Historical

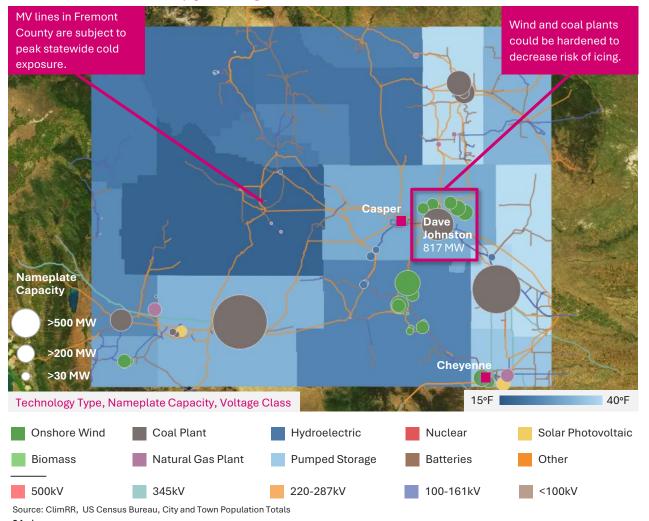
KEY OBSERVATIONS

- Extreme cold exposure is most extreme in NW counties, although annual minimums are sub-freezing across most of the state.
- Undergrounding projects address cold exposure, but WEA may want to consider Dx pole upgrades in NW counties to prevent failure due to ice and snow loading.

Wyoming Average Annual Minimum Temperature (°F)
Distribution Assets, (Population), End-Century [RCP-8.5]

KEY OBSERVATIONS

• Climate projections cannot predict acute extreme events like polar vortices and winter storms, underrepresenting cold exposure.


Fremont County is exposed to average annual minimum temperatures of ~24°F, indicting potential icing and freezing exposure for distribution assets.

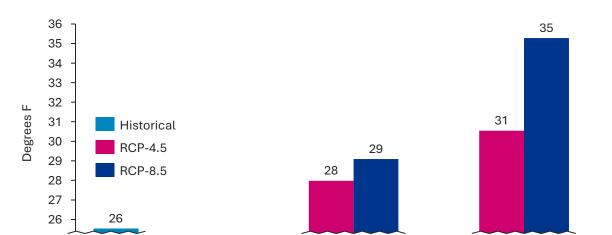
WEA could prioritize hardening projects addressing extreme cold for heavily exposed thermoelectric and wind assets as well as MV transmission lines.

Wyoming Average Annual Minimum Temperature (°F)

Generators, Mid-Century [RCP-8.5]

Key Highlights Analysis Wind assets in Carbon and Albany County are particularly exposed to cold. Without fortification, extreme cold can Wind contribute to ice throw, decreased turbine lifespan, and direct asset failure. Natural gas and coal plants in Converse and Lincoln Counties are subject to extreme cold exposure, which could cause ignition failure or a freezing of coal stockpiles. Thermoelectric No proposals addressing aging gas infrastructure, which requires hardening or replacement to mitigate cold exposure. • The prevalence of below-freezing annual minimums in many counties contributes to Tx freezing/icing risk that can cause asset failure, especially for a group of MV lines **Transmission** passing through Fremont County. WEA could consider structure reinforcement upgrades to combat icing.

24 | Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information


Winter minimum temperatures remain far below 32 °F despite moderate warming over time, indicating adaptations addressing freezing as a priority area for future WEA investment.

Wyoming Average Seasonal Minimum Temperature (°F)

Population-Weighted by County [RCP-8.5]

60 55 50 45 40 Degrees F 35 30 25 Historical 20 Mid Century 15 End-Century 10 (+5 °F) Winter Spring Summer Autumn

Wyoming Average Annual Minimum Temperature (°F) Population-Weighted by County [RCP-4.5, RCP-8.5]

KEY OBSERVATIONS

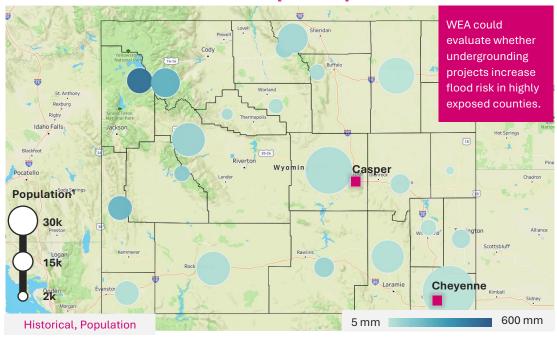
- Significant winter heating (+5 °F by mid-century) will decrease overall
 heating load, but the impact on electricity demand ultimately depends
 on the speed of heating electrification.
- Mid-century winter minimums remain well below 32 °F for much of the year, indicating that **freezing exposure persists despite warming.**
- Few proposed projects address freezing and icing risk despite significant exposure, demonstrating a potential priority area for future investment.

KEY OBSERVATIONS

Historical

- Annual minimums below 32 °F indicate significant freezing and icing exposure for most of the year, demonstrating the need for relevant hardening upgrades such as undergrounding, reconductoring, etc.
- Regarding extreme cold, global climate models do not resolve for extreme cold events like polar vortexes, so assets could still face similar levels of exposure to cold-related failures despite moderate projected warming.

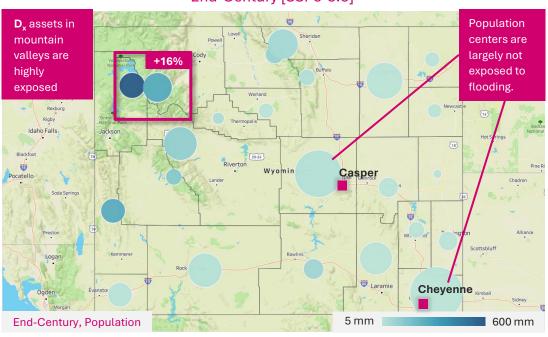
Mid-Century


End-Century

Flood

Asset Analysis

Flood exposure is generally concentrated in mountainous NW counties, where WEA could consider fortifying low-lying Dx substations and hardening weak Dx poles.


Wyoming Average Annual Surface Runoff (mm/year) Historical [SSP5-8.5]

KEY OBSERVATIONS

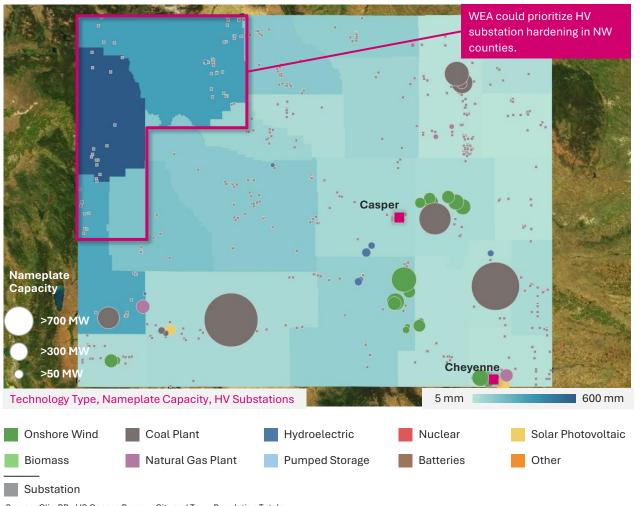
- Most flood exposure lies in the NW **counties** given their mountainous terrain, presence of waterways, and higher precipitation levels.
- Generally low levels of flood exposure in central and eastern population centers given their flat terrain and lower precipitation levels.
- Currently no proposed projects explicitly address flood exposure.

Wyoming Average Annual Surface Runoff (mm/year) End-Century [SSP5-8.5]

KEY OBSERVATIONS

• WEA could consider funding projects to fortify low-lying Dx substations in NW counties given the increase in flood exposure over time.

Teton County


State landmark is exposed to peak flood exposure, posing a threat to low-lying Dx substations and unfortified Dx poles.

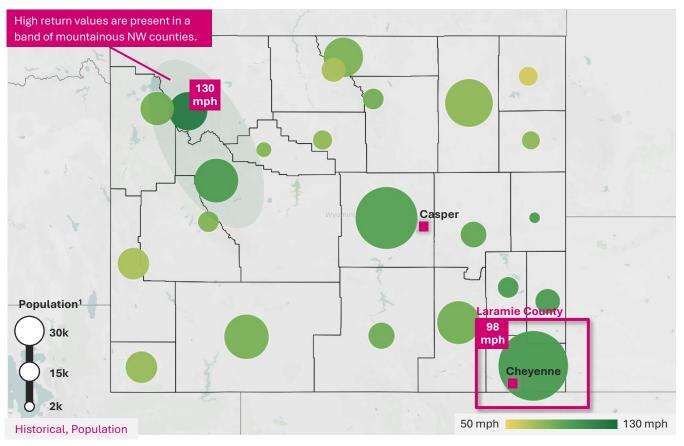
While generators generally face low levels of flood exposure, WEA could prioritize low-lying substation upgrades in a handful of highly exposed NW counties.

Wyoming Average Annual Surface Runoff (mm/year)

Population-Weighted by County [SSP5-8.5]

Key Highlights	Analysis	
Substation	 High voltage substations will be exposed to pluvial flooding. Fluvial flooding is a risk if located in flood plain or riverbank without necessary protections. A pocket of HV substations in Park, Teton, and Lincoln Counties are heavily exposed to flood risk, marking a priority for future hardening projects. 	
Restoration	 Flooding causes ingress/egress complications by washing out access roads, contributing to restoration issues. Flooding can affect on-site buildings or facilities, making it more difficult to maintain adequate staffing for oversight and restoration. 	
Generators	 Generators have minimal flood risk, indicating that WEA could prioritize Tx & Dx projects to address the hazard. A coal and natural gas plant are exposed to flooding in Lincoln County, which could inundate crucial auxiliary equipment and contribute to plant failure. 	

^{28 |} Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

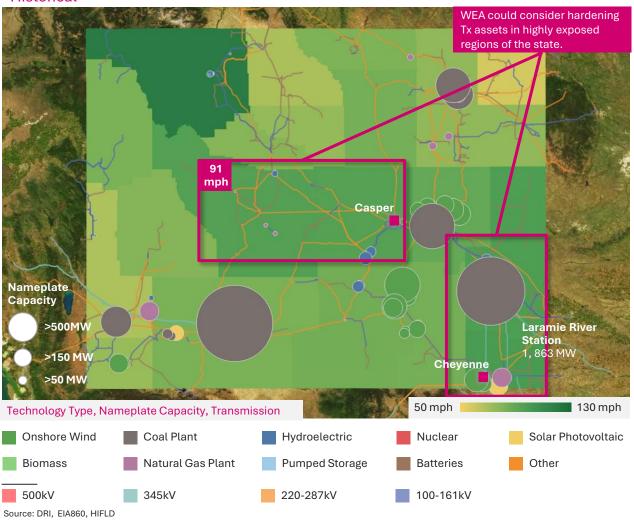

Wind

Asset Analysis

WEA could consider pole upgrades and vegetation management programs to address wind exposure, especially in SE and NW counties that are highly exposed.

Wyoming 100-year Wind Speed (mph)

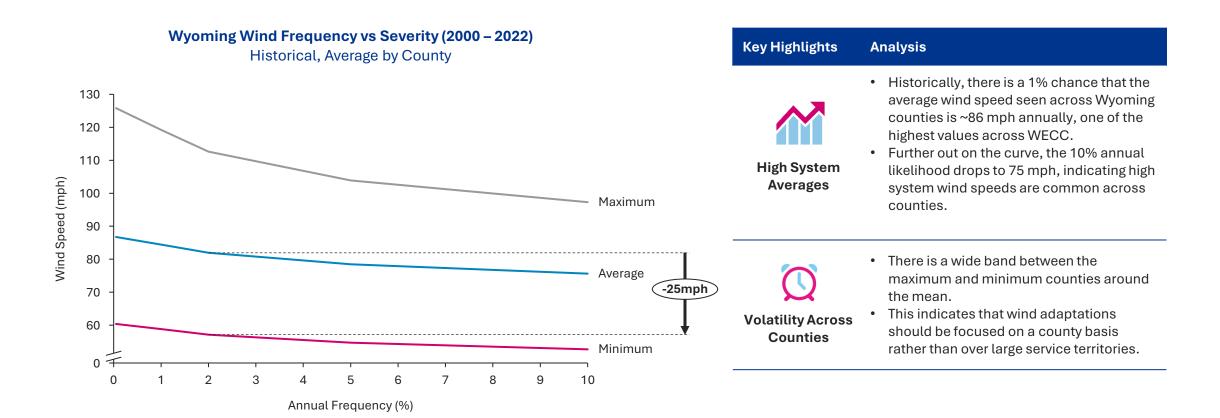
Historical


Key Highlights	Analysis
Distribution	 Given weak climate signals, wind speeds are derived using historical data and do not vary at high spatial resolution. Rather than targeted investments, wind exposure could be addressed through upgraded design standards across a utility service territory.
Laramie County	 Laramie County has a population of approximately 100k and 100-year return value of 98 mph, indicating a high exposure area for Dx assets. Coincident extreme cold events put Dx lines at risk for galloping and sag.
(((•))) SE Counties	 Gust speeds are highest in the SE counties of the state. Undergrounding projects address wind, but WEA could consider pole upgrades and vegetation management as alternative methods to address wind exposure at the distribution level.

WEA could consider Tx structure reinforcement in central and SE counties, as well as hardening for coal cooling systems and updated wind turbine design standards in SE counties.

Wyoming 100-year Wind Speed (mph)

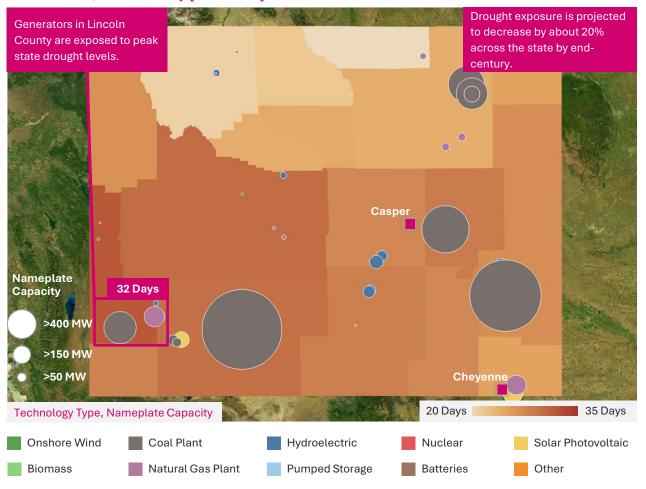
Historical



Key Highlights	Analysis
Transmission	 MV/HV transmission lines in the SE portion of the state are exposed to high wind speeds, including import/export lines to NE/CO that could play a critical role during extreme weather events. MV lines in Fremont and Natrona County are also significantly exposed to wind. WEA could consider reinforcing Tx structures in these regions to address the potential for failure.
	 Laramie River Station is exposed to return values of 97 mph. High wind speeds can reduce the
Coal	performance of cooling towers, resulting in production derates that could significantly impact the WY grid given the generator's size.
- 13 m	 Wind farms cutout speeds can vary between 45-70mph, indicating that in high wind speed events, the turbines stop producing.
Wind	 A cluster of wind farms in Laramie County are exposed to 100-year return period values far greater than the cutout threshold, impacting critical supply near population centers.

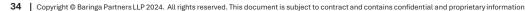
31 | Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information.

Historically, there is a 1% chance that the average wind speed seen across Wyoming counties is ~86 mph annually, indicating higher levels of wind exposure than most states in WECC.


Drought

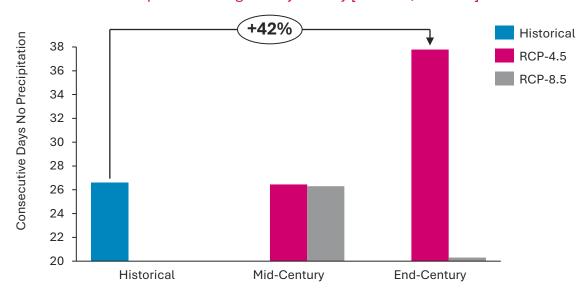
Asset Analysis

WEA could continue to monitor drought trends to assess the impact on hydroelectric production and consider thermoelectric cooling and solar panel cleaning projects.


Wyoming Consecutive Days No Precipitation

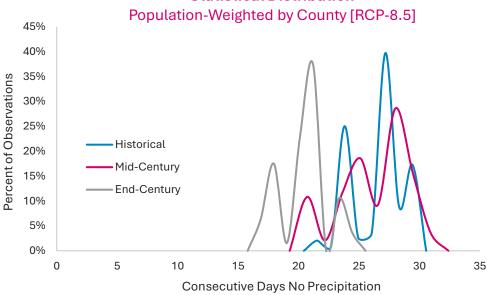
Generators, Mid-Century [RCP5-8.5]

Key Highlights	Analysis	
	 A string of hydroelectric plants along the N. Platte River are exposed to above average state-wide drought levels. 	
Hydroelectric	 Asset owners and grid operators could consider monitoring drought trends throughout the river basin, which can vary throughout the state. 	
	 Coal and natural gas generators are exposed to peak statewide drought exposure in Lincoln County. 	
Thermoelectric	 Lack of water availability can reduce plant cooling ability and disrupt flue gas desulfurization systems (coal), resulting in power production curtailments and increased emissions. 	
-\$122	Drought conditions can contribute to dust buildup on panels, decreasing solar capacity factors	
Solar	 In areas that also have high wildfire exposure, such as Sweetwater County, panel cleaning projects address two hazards simultaneously. 	



Drought exposure remains relatively constant to mid-century, but end-century projection diverge widely by warming scenario, indicating that they should be monitored closely.

Wyoming Average Annual Consecutive Days with No Precipitation


Population-Weighted by County [RCP 4.5, RCP-8.5]

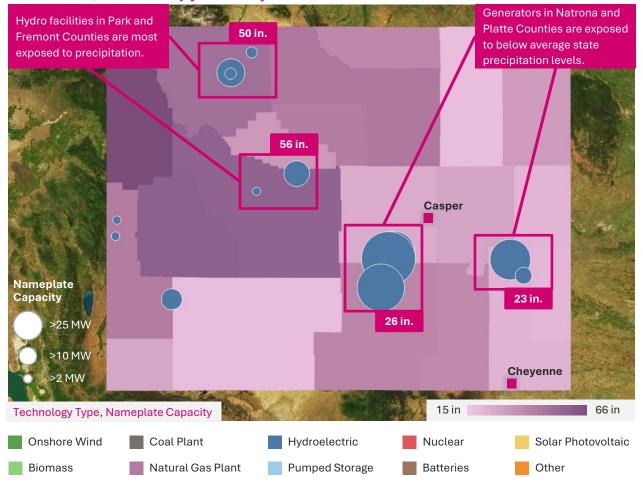
KEY OBSERVATIONS

- Drought exposure increases by ~42% by end-century (under RCP 4.5), contributing to potential asset cooling failures and reduced hydroelectric generation.
- Significant gap between drought exposure under the RCP-4.5 and RCP-8.5
 warming scenarios indicates that drought does not scale linearly with
 temperature and could be monitored closely by asset owners and grid
 operators to determine which trajectory it is following.

Wyoming Average Consecutive Days with No Precipitation Statistical Distribution

KEY OBSERVATIONS

- Leftward shift of end-century graph generally indicates decreasing drought severity across the state.
- The shift from a quad-modal to tri-modal shape by mid-century indicates that drought exposure converges from 4 to 3 distinct climate zones.
- P3 in the mid-century graph indicates that the largest climate zone will experience about 28 consecutive days without precipitation, more than the 26 faced by the largest zone historically.


Precipitation

Asset Analysis

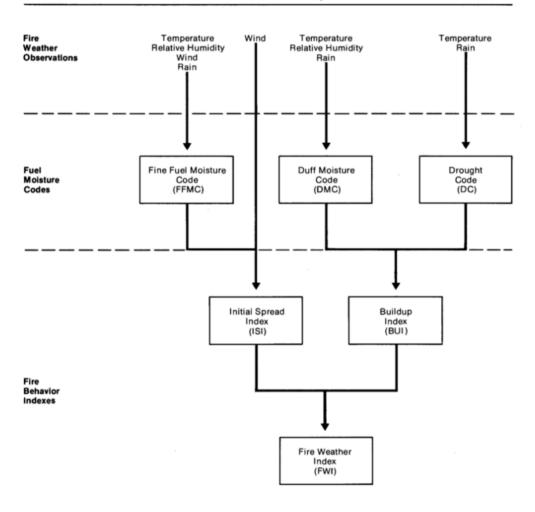
Precipitation levels are projected to increase, but WEA could also consider the impacts of precipitation timing, upstream conditions, and changes to snow patterns on hydro production

Wyoming Annual Max Precipitation (in)

Generators, Mid-Century [RCP5-8.5]

Key Highlights	Analysis
	 Timing of precipitation has an important impact of hydro output.
	 Extreme rainfall events may overflow reservoirs and put more pressure on dams, increasing risk of failure.
Timing	 Increasing precipitation levels indicate that extreme precipitation events may become more common, potentially justifying dam hardening projects.
Upstream Coordination	 Consider coordinating with CEO to gather data on N. Platte River flows to more accurately forecast hydroelectric production from key facilities downstream.
	 While precipitation levels remain relatively constant to mid-century, precipitation type and timing is likely to change due to warming and could be monitored.
Changes to Snow Patterns	 Grid operators could consider the impacts of less snowfall and earlier snow melt when conducting long-term planning.

Baringa Confidential



^{37 |} Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

Appendix

Fire Weather Index synthesizes weather and moisture content data into a normalized value representing the danger of fire spread once ignition has occurred.

Structure of the Canadian Forest Fire Weather Index System

KEY TAKEAWAYS

- FWI is a useful metric for evaluating weather-based conditions that heighten the danger of wildfire spread once ignition has occurred.
- Initial Spread Index: Measures the expected rate of fire spread, based on wind speed and moisture content of fine fuels/forest litter (Fine Fuel Moisture Code).
- Buildup Index: Measures the total amount of forest fuel available for consumption, based on the moisture content of intermediate organic layers, such as decomposing plant matter (Duff Moisture Code), and the moisture content of deep organic layers and soils, which corresponds to drought measures (Drought Code).
- Daily FWI values were calculated using readings from Argonne's downscaled 12km climate data and averaged annually or seasonally across RCP-4.5 and RCP-8.5.
- Percentiles (below) were calculated based on FWI values across all
 12km grid cells in the contiguous U.S.

FWI Class	Percentile range in historical period	FWI values in Class
Low	0–25 th percentile	0–9 FWI
Medium	25–50 th percentile	9–21 FWI
High	50–75 th percentile	21–34 FWI
Very High	75–90 th percentile	34–39 FWI
Extreme	90–98 th percentile	39–53 FWI
Very Extreme	Above 98th percentile	Above 53 FWI

