GRID RESILIENCE REPORT | DISCLAIMER

Disclaimer

This document: (a) is proprietary and confidential to Baringa Services Ltd ("Baringa") and should not be disclosed to or relied upon by any third parties or re-used without Baringa's consent; (b) shall not form part of any contract nor constitute acceptance or an offer capable of acceptance; (c) excludes all conditions and warranties whether express or implied by statute, law or otherwise; (d) places no responsibility or liability on Baringa or its group companies for any inaccuracy, incompleteness or error herein; and (e) is provided in a draft condition "as is" without warranty. Any reliance upon the content shall be at user's own risk and responsibility. If any of these terms is invalid or unenforceable, the continuation in full force and effect of the remainder will not be prejudiced.

Copyright © Baringa Services Limited 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information. No part of this document may be reproduced without the prior written permission of Baringa Services Limited.

This report has been prepared by Baringa Services Ltd or a Baringa group company ("Baringa") specifically for the client named in this report ("Client") for the sole purpose of assisting the consideration of Client or interested investors ("Investors") in the potential transaction named in this report ("Transaction").

This report does not constitute a personal recommendation of Baringa or take into account the particular investment objectives, financial situations, or needs of Client or the Investors in relation to the Transaction. Client and Investors should consider whether the content of this report is suitable for their particular circumstances and, if appropriate, seek their own professional advice and carry out any further necessary investigations before deciding whether or not to proceed with the Transaction. This report should not, under any circumstances, be treated as a document containing complete and accurate information sufficient to make an investment decision. It is the responsibility of the Client and Investors to conduct such due diligence as necessary of any risk factors not identified in this report or which could affect the operation, financial standing and further development prospects of any assets being acquired, charged or sold in the Transaction. Baringa shall not be liable in any way for errors or omissions in information contained in this report based upon publicly available industry data or specific information provided by others (including Client, its affiliates, their advisers, target entity or any third parties). Baringa makes no representations or warranties (express or implied) concerning the accuracy or completeness of the information contained in this report, nor whether such information fully reflects the actual situation described in this report, and all conditions and warranties whether express or implied by statute, law or otherwise are excluded.

Information and data contained in this report is confidential and must not be disclosed to third parties by Client or Investors except as permitted in the relevant Client contract with Baringa or with the written consent of Baringa. This report may not be used in any processes involving the public offering in which shares of stock in a company are sold either privately or on a securities exchange. No part of this Report may be copied, photocopied or duplicated in any form by any means or redistributed (in whole or in part) except as permitted in the relevant Client contract with Baringa or with the written consent of Baringa. Copyright © Baringa Services Ltd 2024. All rights reserved.

Grid Resilience Reports

Washington

Energy & Resources | Networks 12/10/2024

Table of contents

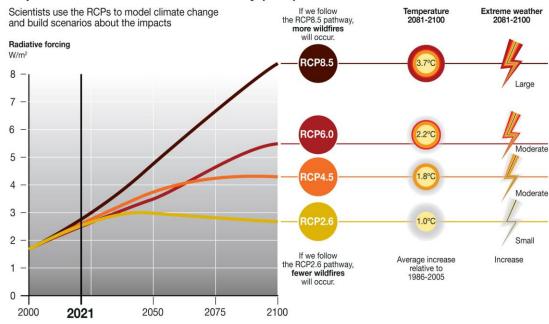
Project Context			
Project Context & Approach	4-6		
Deliverable Overview			
Climate Science Background	8		
Data Sources	9-11		
Analysis Approach	12		
Grid Resilience Report			
Assets Class Overview	13-15		
• Wildfire	16-19		
Heat	20-24		
• Cold	25-29		
• Flood	30-33		
• Wind	34-37		
• Drought	38-39		
Precipitation	40-42		

Grid Resilience Reports

Climate Science Background, Data Sources, and Analysis Approach

RCPs and SSPs provide viable climate pathways for an uncertain future

ipcc


Generating Emission Scenarios

- Representative concentration pathways (RCPs) project GHG concentrations: Defined by the IPCC in 2014 as scenarios of future emission concentrations and other radiative forcing that align to climate projections. 1 RCPs use assumptions relating to policy decisions and individual behavior that may change future GHG emissions concentrations. 1 SSPs have largely replaced RCPs.
- Shared socioeconomic pathways (SSPs) provide 5 'storylines' to contextualize RCPs and to provide the various future pathways possible.² They consider how the world could evolve socioeconomically and politically, including how various levels of climate change mitigation and adaptation could be achieved and will influence future climate scenarios.3
- RCPs included in the CLIMRR dataset include RCP 4.5 and RCP 8.5.
- SSPs included in the Hydrosource dataset include SSP585, SSP370, SSP245, and SSP126.

Modeling Scenario: RCP 4.5

- "Moderate" scenario: Emissions peak around 2040 and then slowly begin to decline.⁴ Temperatures warm about 3.2 °F from a 2000 baseline.⁵
- CO2 emissions plateau before falling mid-century, as energy use sharply declines and there is large scale reforestation. 6

Representative Concentration Pathway (RCP)

GRID-Arendal/Studio Atlantis, 2021

Modeling Scenario: RCP 8.5

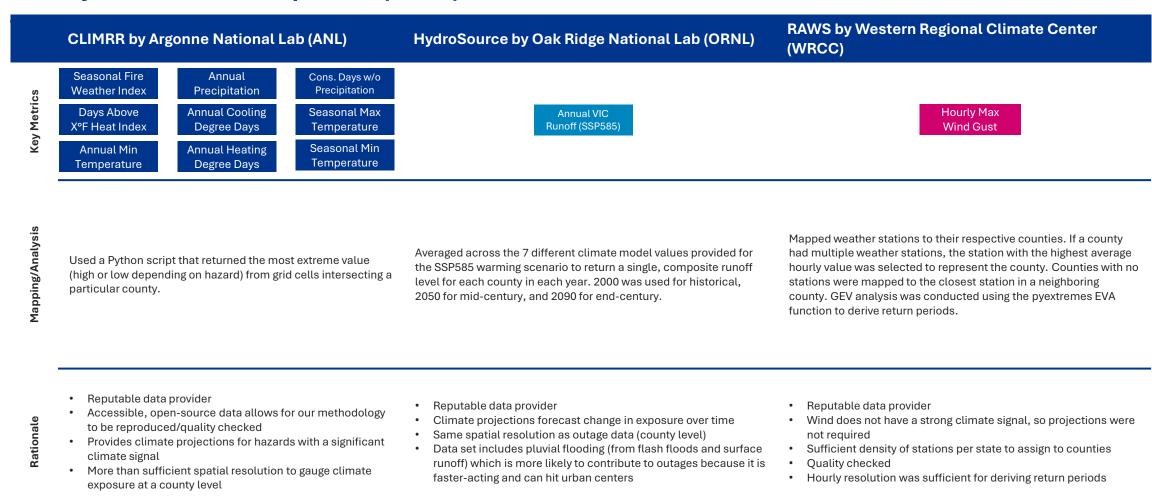
- "Rapid growth" scenario: Emissions continue to rise throughout the twenty-first century.4 Temperatures warm about 6.6 °F from a 2000 baseline. 5
- CO2 emissions are three times higher than the present by end-century, with a large increase in methane emissions and continued fossil fuel use. 6

¹ Source: ComEd Vulnerability Study 2023 ⁴ Source: Help (cal-adapt.org)

² Source: Jupiter

³ Source: Carbon Brief

⁵ CoastAdapt


⁶ Climate Copernicus

Baringa leverages national downscaled climate datasets with high granularity to assign county-level climate exposure

	CLIMRR by Argonne National Lab (ANL)	HydroSource by Oak Ridge National Lab (ORNL)	RAWS by Western Regional Climate Center (WRCC)
Dataset Description	The Climate Risk and Resilience Portal (CLIMRR) provides highly localized climate projections from mid- to end-century using a supercomputer to model 60 climate variables.	HydroSource is a comprehensive national water energy digital platform consisting of hydropower-related data set, models, visualizations, and analytics tools.	The Wildland Fire Remote Automated Weather Stations (RAWS) data set provided by WRCC is a quality-controlled repository of hourly data for 17 select weather metrics from a network of weather stations across western states.
Data Provider Description	Argonne National Lab is a federally-funded science and engineering research center sponsored by the Department of Energy.	Oak Ridge National Lab is a federally funded research and development center sponsored by the Department of Energy.	The Western Regional Climate Center is one of 6 Regional Climate Centers in the United States. WRCC works jointly with NOAA to coordinate climate activities and conduct applied research on climate issues in the West.
Years	Historical, Mid-Century, End-Century	1980-2099	2000-2022
Spatial Resolution	12 km (aggregated to county)	County	Weather station (aggregated to county)
Hazards	RAIN FIRE HEAT COLD DROUGHT	FLOOD	WIND

Baringa leverages national downscaled climate datasets with high granularity to assign county-level climate exposure (cont.)

Baringa is leveraging forward-looking climate projections to inform its technical assistance work for states in WECC

Wind

Source: Western Regional Climate Center (WRCC)

Input metric: Hourly max wind

speed (mph)

Output: Wind speed at key return

periods via GEV distribution

Wildfire

• Source: CLIMRR (ANL)

Input metric: Fire weather index

(FWI) by grid cell

Output: Maximum fire weather

index by county

Precipitation

Source: CLIMRR (ANL)

Input metric: Annual total precipitation (in/year) by grid cell

Output: Max annual total

precipitation (in/year) by county

Drought

Source: CLIMRR (ANL)

Input metric: Consecutive days with no precipitation by grid cell **Output:** Max consecutive days with no precipitation by county

Heat

Source: CLIMRR (ANL)

Input metrics:

- Days above 95, 105, 115, 125 °F
- Annual cooling degree days
- Seasonal maximum temperatures

Output: Input metrics applied from a grid cell level to a county level

Cold

Source: CLIMRR (ANL)

Input metrics:

- Annual minimum temperature
- · Annual heating degree days
- Seasonal minimum temperatures

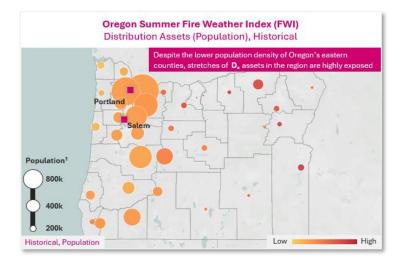
Output: Input metrics applied from a grid cell level to a county level

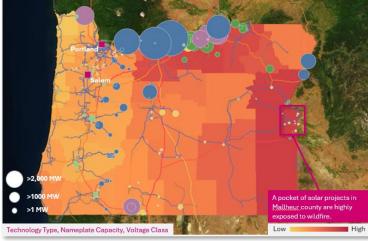
Flood

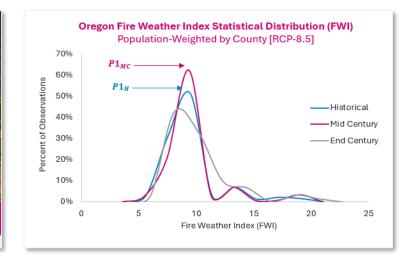
Source: Hydrosource (ORNL)

Input metric: Annual Variable
Infiltration Capacity (VIC) model

runoff (mm/year)


Output: Average annual VIC runoff (pluvial flooding) for 4 warming scenarios and 3 time periods (historical, mid-century, end-century)


This report is standardized to include 3 different data visualizations that provide insights for Distribution, Transmission, and Generation across 7 extreme weather hazards


Distribution Maps

Transmission & Generation Maps

Statistical
Distribution Graphs

- Purpose: Uses population as proxy for volume of distribution assets given that the location of distribution assets is restricted.
- Interpretation*: Locate areas of high exposure by identifying counties with coincident large bubbles and dark colors. This indicates a combination of high volume of distribution (Dx) assets and significantly high extreme weather projections.
- **Purpose:** Overlays transmission and generation assets on climate projections by county.
- Interpretation: Locate areas of high exposure by identifying assets in counties of high risk. Exposure differs by asset class and will be highlighted in Key Insights tables throughout.
- Purpose: Contains statistical insights related to each metric. Indicates change in dispersion and severity of risk over time on average
- Interpretation: An increase in the width of the peak indicates a decrease in concentration of exposure, meaning more counties are exposed to more severe weather. A shift right in the curve indicates that on average, counties are experiencing more severe weather.

^{*}Note: Analysis addresses risk given volume of assets and does not account for risk to remote customers at end of radial distribution grids.

Asset Class Overviews

Summary

Increased extreme heat exposure will have significant impacts on Generation, and T&D assets, while fire exposure generally poses a larger threat to just T&D

Key Takeaways

- Fire poses a threat of failure to Dx and Tx assets in central counties with high exposure that border densely populated western metro areas.
- Extreme heat exposure is concentrated in SE and south-central counties, causing derating of electricity supply and T&D infrastructure.
- Despite warming over time, average minimums stay close to 32°F in northern counties, maintaining potential icing exposure across all asset classes.

Change to Mid-Generation Transmission & Distribution (Tx & Dx) **AWPI* Projects to Address Exposure** Hazard **Exposure** Century Wind and solar assets are not insulated from Centrally located counties face high exposure, Gen: Enclosures, emergency fire exposure posing risk to western adjacent population centers response planning, panel cleaning, Soot from fires could hurt turbine capacity Major population centers border high-exposure equipment elevation. factors for wind farms in Klickitat and counties, posing a threat to Dx and Tx assets in T&D: Undergrounding, veg the case of wildfire spread and growing by 30% to Columbia counties that are heavily exposed management, pole to wildfire 2100 [RCP-8.5]. **FIRE** wrapping/upgrades, Ash from wildfires accumulates on solar Tx lines in east and north that will become critical reconductoring. panels, reducing plant output during wildfire as WA transitions to a net importer, have season. significant wildfire exposure. Extreme heat exposure contributes to plant Extreme heat can cause asset failure and demand Gen: Climate-adjusted production derating modeling, DERs, enclosures. spikes • Thermoelectric generators that rely on Extreme heat contributes to demand spikes, T&D: Undergrounding. water-based cooling methods will capacity derating, and failure for Dx and Tx assets. reconductoring, DLR, line/cable experience derating. Tx lines in east and north that will become critical upgrades, cooling systems. Extreme heat causes derating for solar PV, **HEAT** as WA transitions to a net importer, have decreasing energy output when demand is significant heat wildfire exposure, yielding highest. capacity constraints and derating in times of need. Temperatures warm, but icing exposure Cold exposure coincides with population centers Gen: Enclosures, heating systems, equipment upgrades, insulation. persists Peak cold exposure coincides with population Many generators face continued exposure to centers in the northwestern counties of the state. T&D: Undergrounding, covered icing and other cold-related failures through posing a threat of Dx and Tx icing and asset failure. COLD conductors, pole upgrades, mid-century. enclosures.

^{*} AWPI = Alignment with proposed investment (40101(d) Round 1 project proposals)

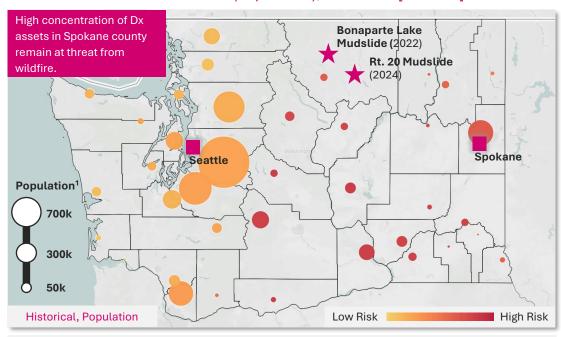
Increased drought exposure coupled with increased precipitation indicates that extreme precipitation is more likely, causing flooding and posing a threat to hydro output

Key Takeaways

- Flood exposure will increase in western counties, posing a threat to low-lying distribution assets in the region.
- WSDOC could consider working with utilities to update Dx design standards throughout the state and funding T&D hardening projects in western counties.
- Increased drought exposure and changing precipitation patterns could warrant projecting hydro generation output with climate-adjusted forecasts.

Hazard	Exposure	Change to Mid- Century	Generation	Transmission & Distribution (Tx & Dx)	AWPI*	Description
≈ FLOOD	Н		 Natural gas and hydro assets are heavily exposed to flooding Grays Harbor Energy Center is highly exposed to flood, jeopardizing control houses and buildings. Hydro plants in the western counties are at risk of dam overtopping. 	Peak flood exposure coincides with T&D asset density Flood exposure is projected to increase in populated western counties by mid-century. Flooding poses a threat to a high density of Dx assets, particularly low-lying substations.		Gen: Reinforce dams, fortify control houses, elevate equipment. T&D: Enclose/elevate substations, build flood walls, upgrade Dx poles.
WIND	М	>	Consider hardening for renewable generators in highly exposed regions Wind and hydro assets are exposed to high wind speeds in SE counties, which can decrease electricity output and cause failure.	 WSDOC could consider Tx structure and Dx pole upgrades in western counties WSDOC could prioritize Dx hardening in NW counties and Tx structure reinforcement in SW counties with crucial export lines to OR and CA. 		Gen: Upgraded design standards, debris filtering. T&D: Pole upgrades, decreased spans, undergrounding.
DROUGH	т	1	Decreased output for hydro and thermoelectric generators Hydroelectric assets along the Columbia River are exposed to peak drought levels at 75 days per year by 2050, contributing to decreased output.	Drought exposure does not have a material impact on transmission and distribution assets		Gen: Forecast hydro production with climate-adjusted inputs, upgrade air intakes.
RAIN	М	-	Potential negative impacts on hydro generation Extreme precipitation events may become more likely over time, putting pressure on dams and increasing risk of failure.	Precipitation exposure does not have a material impact on transmission and distribution assets		Gen: Reinforce dams, monitor precipitation levels, request hydro data from neighboring SEOs.

^{*} AWPI = Alignment with proposed investment (40101(d) Round 1 project proposals)


Wildfire

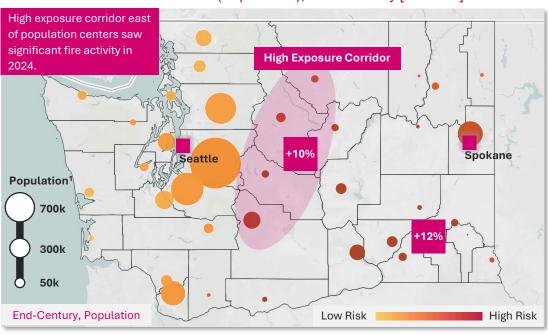
Asset Analysis

Major population centers border high-exposure counties, posing a threat to distribution assets in the case of wildfire spread

Washington Summer Fire Weather Index (FWI)

Distribution Assets (Population), Historical [RCP-8.5]

KEY OBSERVATIONS


- Historical wildfire exposure is concentrated in the Washington's eastern counties due to the region's drier climate and hotter temperatures.
- Dx and Tx assets in Spokane County exhibit high exposure, though highest exposure remains in sparsely-populated counties in the east.
- Assets in border counties remain at risk given fire's propensity to spread.

Source: ClimRR, US Census Bureau, City and Town Population Totals

14 Copyright © Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information.

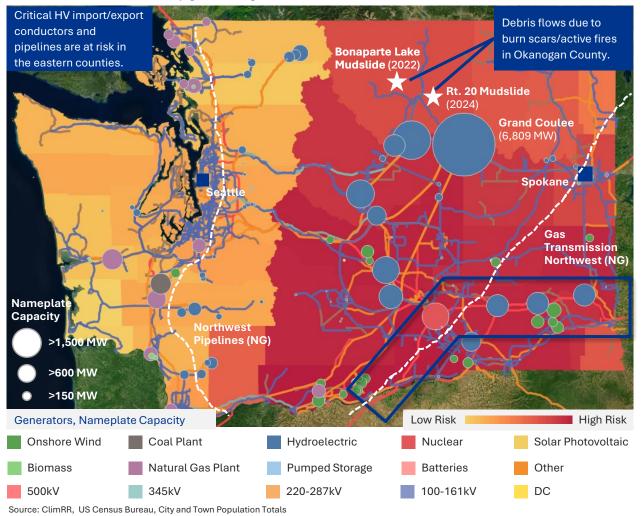
Washington Summer Fire Weather Index (FWI)

Distribution Assets (Population), End-Century [RCP 8.5]

KEY OBSERVATIONS

 Wildfire exposure generally increases by end-century, particularly becoming more severe for eastern portions of the state.

Rural county significantly exposed to wildfire, posing a threat of prolonged outages for radial customers and fire spread to western population centers.



¹Population bubbles are continuous and therefore labels are approximate

While most generators are insulated from wildfire risk, critical tie lines that support import and export capabilities are vulnerable to wildfires in the eastern region of the state.

Washington Summer Fire Weather Index (FWI)

Generators, Mid-Century [RCP-8.5]

Key Highlights Ar

Analysis

Transmission

- Import/export 500+ kV lines connecting WA to OR are highly exposed in SE counties
- WSDOC could consider hardening these highly exposed lines given their crucial role during extreme weather events.

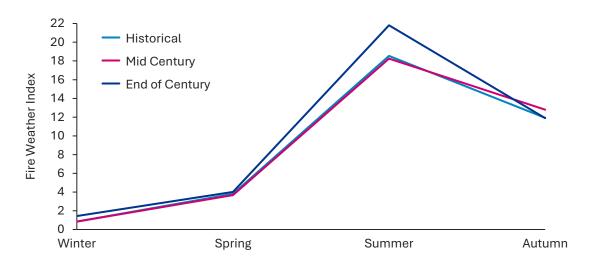
on

Wildfire causes **ingress/egress issues** through destruction of roads and transportation, slowing restoration times and reopening.

 Gas Transmission Northwest, a major NG pipeline, is exposed to elevated levels of wildfire exposure in east WA. Even in undergrounded sections, measurement and control assets are highly vulnerable.

Solar

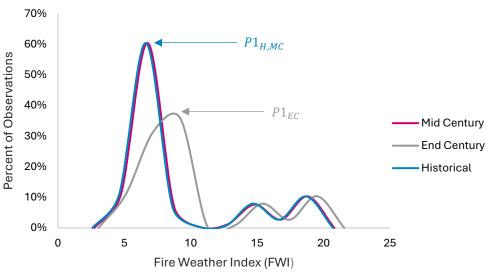
 During wildfire season, ash from nearby burns accumulates on solar arrays, inhibiting irradiation exposure and decreasing plant output.


15 | Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

By end-century, Summer wildfire season is expected to both increase in severity and duration, increasing exposure for distribution assets and decreasing window for planned maintenance

Washington Average Seasonal Fire Weather Index (FWI)

Population-Weighted by County [RCP-8.5]



KEY OBSERVATIONS

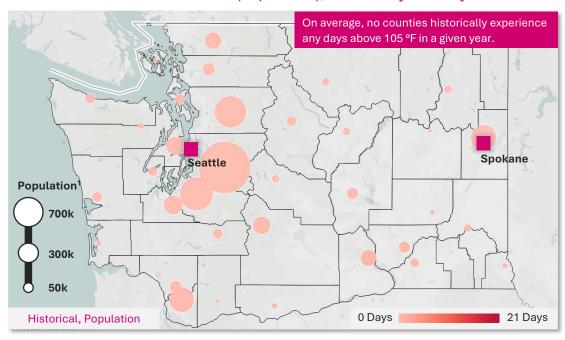
- End-century wildfire exposure is elevated, with the sharpest increase occurring between Spring and Autumn by about 18% from historical FWI.
- Elevated wildfire exposure around the summer suggests a lengthening of the wildfire season combined with an increase in severity.
- The change in length of wildfire season suggests that the window to for scheduled maintenance during the shoulder seasons is diminishing.

Washington Fire Weather Index Statistical Distribution (FWI)

Population-Weighted by County [RCP-8.5]

KEY OBSERVATIONS

- The regions represented by P1 will experience more severe wildfires by end-century, as the peak shifts from about FWI 6 to about FWI 8.
- The tri-modal shape of the curve represents three regions of the state that face distinct levels of fire risk given differences in climate zones.
- Wildfire exposure is largely unchanged by mid-century, but by endcentury, the rightward shift of the peaks indicates that the most at-risk regions of the state will face increasingly severe fire exposure.

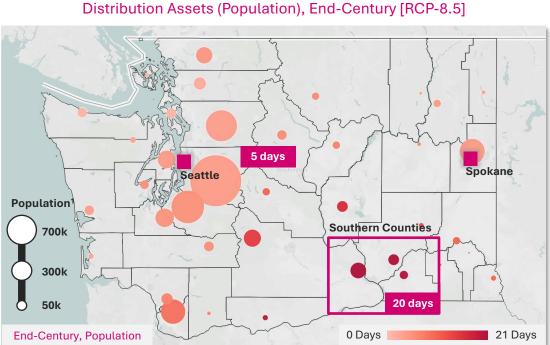

Extreme Heat

Asset Analysis

Extreme heat exposure changes drastically by end-century, inciting failure and derating of distribution assets while simultaneously increasing summer cooling load

Washington Days Above 105 °F

Distribution Assets (Population), Historical [RCP-8.5]


KEY OBSERVATIONS

- Currently T_x and D_y assets have no exposure to days above 105 °F.
- 105 °F is a particularly important threshold for distribution assets and substations, which can fail when exposed to two consecutive days above 104 °F.²

Source: ClimRR, US Census Bureau, City and Town Population Totals

18 | Copyright © Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

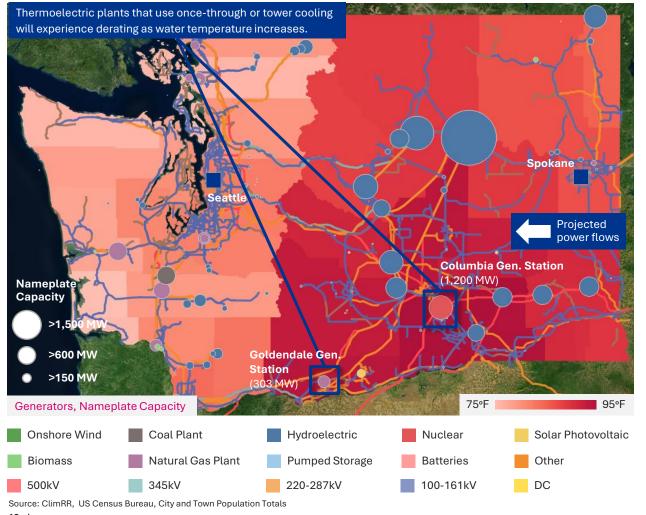
Washington Days Above 105 °F

KEY OBSERVATIONS

 Highly populated counties (Pierce, King, and Snohomish) are expected to face about 5 days >105 °F annually.

Walla Walla

Southeastern counties face extreme heat exposure of over 20 days >105 °F, causing high asset utilization and potential failure.

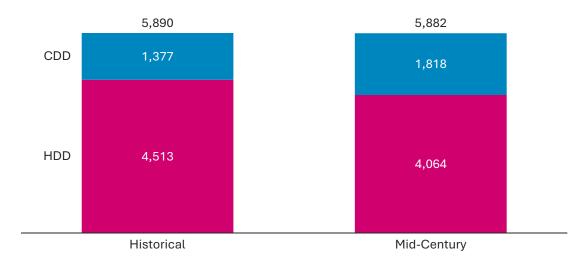


¹Population bubbles are continuous and therefore labels are approximate. ²EPRI Climate READi

Goldendale and Columbia Generating Stations are exposed to high levels of extreme heat, which may have deleterious effects on plant cooling efficiency, reducing overall plant output

Washington Summer Average Maximum Temperature (°F)

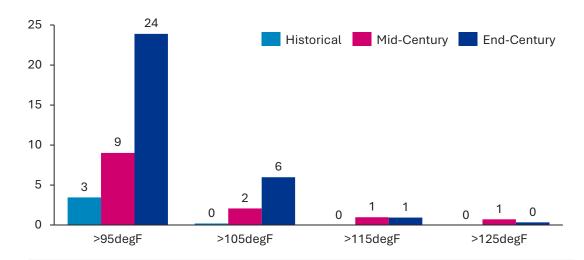
Generators, Mid-Century [RCP-8.5]



Key Highlights Analysis • Thermoelectric generators (Natural Gas, Coal, Nuclear) that rely on water-based cooling methods (once-through, cooling ponds, towers) will experience production derates as extreme heat raises average Thermoelectric water temperatures. • This is due to both cooling inefficiencies and environmental regulations around temperature of released water. • A cluster of Tx lines in Benton, Franklin, and Walla Walla Counties are highly exposed to extreme heat, which contributes to line sag, derating, and **Transmission** potential failure. • The majority of large hydroelectric plants in the state face above average extreme heat exposure (>85 °F avg. summer max). High air temperatures can result in reservoir Hydroelectric temperatures that can stress native aquatic organisms and increase likelihood of harmful algal blooms.

19 | Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

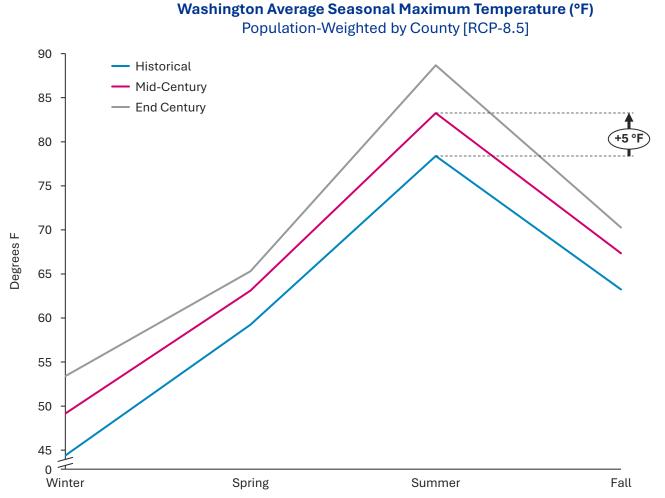
Extreme heat days will become more common in Washington, increasing peak load and contributing to derating and capacity violations across all asset classes


Washington Average Annual Cooling & Heating Degree Days (CDD & HDD) Population-Weighted by County [RCP-8.5]

KEY OBSERVATIONS

Between historical and mid-century, the ratio of CDD to HDD increases, with the share of average number of CDD jumping from about 23% to 31% across historical and mid-century.

Washington Average Annual Days Exceeding Daily Max Heat Index Thresholds Population-Weighted by County [RCP-8.5]

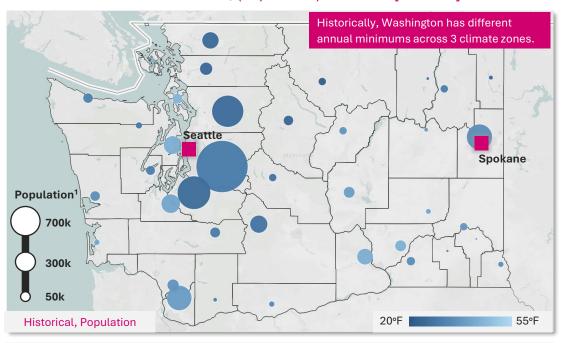


KEY OBSERVATIONS

- This results in increased summer asset utilization and degradation, but impacts to winter utilization remain unclear depending on heating electrification trends.
- Increase in days >105 °F poses a substantial risk to distribution transformers and switchgear, which can fail after two consecutive days above 104 °F.

Average seasonal maximum temperature increases by 5 °F in mid-century, increasing system utilization and contributing to asset degradation

Key Highlights	Data Analysis	
Temperatures are rising every	 Heat risk increases most drastically in summer, with a 5 °F increase in the average seasonal max by mid-century, increasing system utilization and degradation. 	
month	 Less pronounced warming in shoulder seasons; increased spring and fall temperatures may reduce heating load. 	
Hot season both lengthens and intensifies	 Longer summers: By end-century, summers will have extended as more months will have average temperatures >70 °F. Shortened maintenance season: Off-peak months for maintenance shorten. Accelerated asset degradation: Prolonged heat accelerates asset degradation. 	
Peak intensifies, but does not shift	 Summer remains the hottest season on average across the state. Timing of summer peak capacity warnings should remain the same. 	

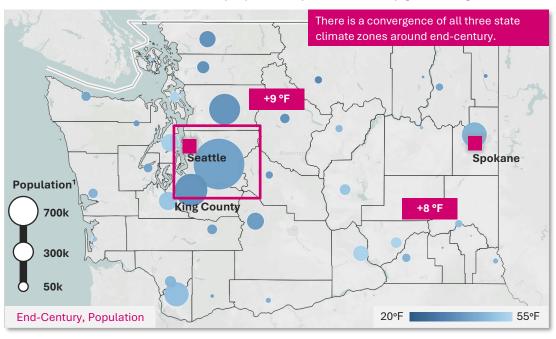

Extreme Cold

Asset Analysis

Average annual temperature minimums are projected to increase by about 9°F in end-century, yet extreme cold exposure remains in northwestern counties

Washington Average Annual Minimum Temperature (°F)

Distribution Assets, (Population) Historical [RCP-8.5]



KEY OBSERVATIONS

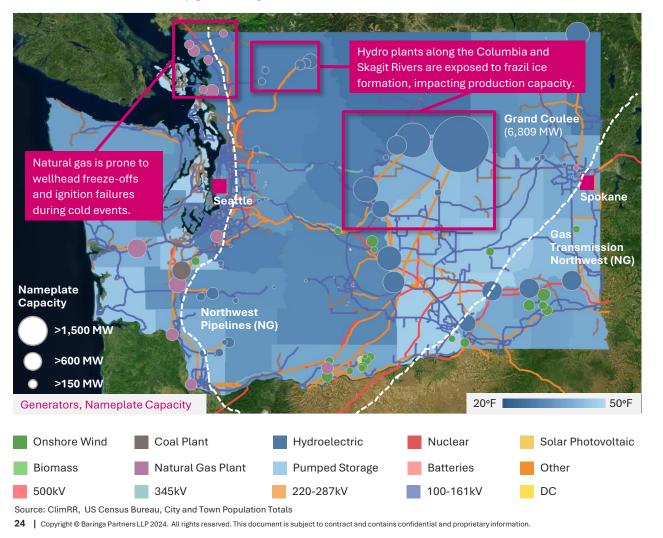
- Most acute cold exposure lies in the northwest portion of the state,
 coinciding with large population centers.
- The high volume of distribution assets in these areas are exposed to icing, impacting substation equipment and causing Dx and Tx line galloping.

Washington Average Annual Minimum Temperature (°F)

Distribution Assets, (Population), End-Century [RCP-8.5]

KEY OBSERVATIONS

• Climate projections cannot predict acute extreme events like polar vortices and winter storms, **underrepresenting cold exposure**.

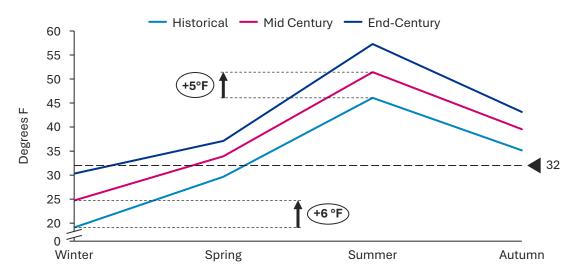

King County is exposed to average annual minimum temperatures of about 35 °F, indicting potential icing and freezing exposure for distribution assets

Despite warming, sub-freezing annual minimum temperatures persist in many counties throughout the state with generating assets, maintaining exposure to freezing/icing events

Washington Average Annual Minimum Temperature (°F)

Generators, Mid-Century [RCP-8.5]

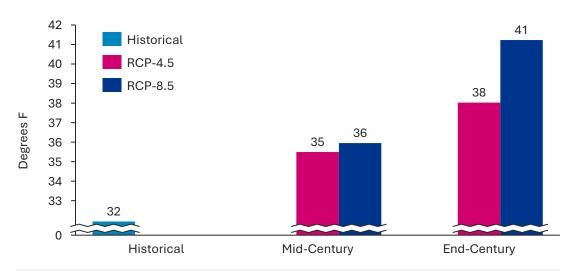
 Many hydroelectric assets on the upper Colombia and Skagit Rivers are exposed to sub-30°F temperatures mid-century. · Frazil ice formation and maloperation of **Hydroelectric** spill gate motors can result in plant faults or production derates. A pocket of natural gas plants in the northwest corner of the state are exposed to average minimums of about 29 °F, which could cause ignition failure or other performance issues. Large pipelines in the NW and E counties **Natural Gas** that support transmission of natural gas into the state could be impacted by frost heaves and depressurization under severe extreme cold and supply scarcity. · Average annual minimums in Klickiktat and Columbia counties are about 36°F and 38°F respectively, posing a regular threat Wind of icing to wind farms in the region. A high density of Tx assets are exposed to cold in NW counties and could be prioritized for weatherization. Freezing/Icing


Analysis

Key Highlights

Seasonal and annual temperature minimums are projected to increase over time, but the ultimate effect on system utilization depends on the pace of heating electrification

Washington Average Seasonal Minimum Temperature (°F)

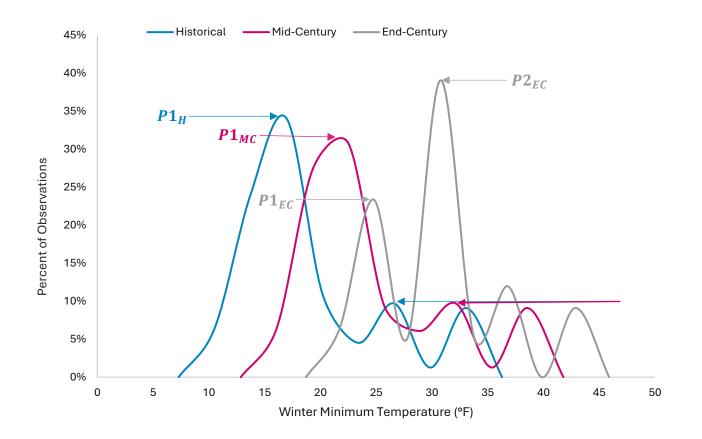

Population-Weighted by County [RCP-8.5]

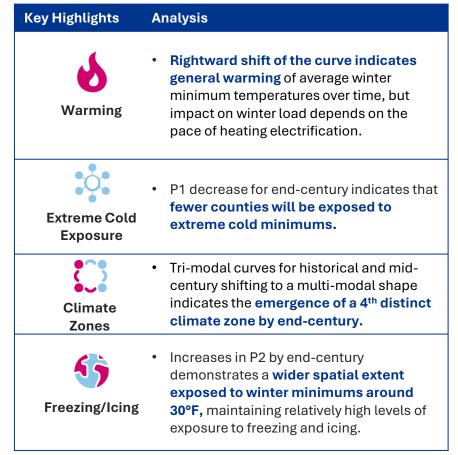
KEY OBSERVATIONS

- Significant winter warming (+6 °F by mid-century) will decrease overall heating needs, but the impact on electricity demand ultimately depends on the speed of heating electrification.
- Downscaled climate data does not forecast acute temperature shocks, meaning assets could still face similar risk levels of cold-related failures.
- Warming effects are more significant in summer/winter compared to the shoulder seasons.

Washington Average Annual Minimum Temperature (°F) Population-Weighted by County [RCP-4.5, RCP-8.5]

KEY OBSERVATIONS


- ~12% increase in average annual temperature minimum by mid-century indicates a reduction in heating load, but the impact on electricity demand ultimately depends on the speed of heating electrification.
- Regarding extreme cold, global climate models do not resolve for extreme cold events like polar vortexes, so cold exposure is likely under indicated by the model.



Winter minimum temperatures are expected to warm over time, yet a similar percentage of the population is still exposed to sub-freezing minimums by end-century

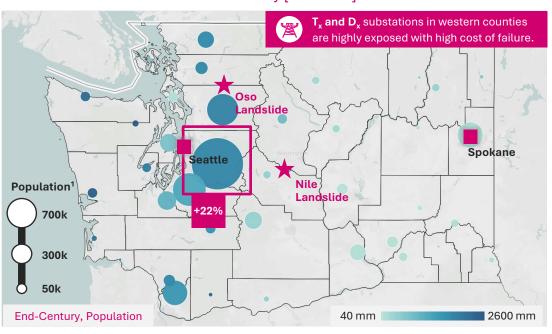
Washington Average Winter Minimum Temperature (°F)

Population-Weighted by County [RCP-8.5]

Flood

Asset Analysis

Flood exposure is significantly higher in western counties and is projected to intensify by endcentury, posing a threat to low-lying substations and unfortified distribution assets


Washington Average Annual Surface Runoff (mm/year) Historical [SSP5-8.5]

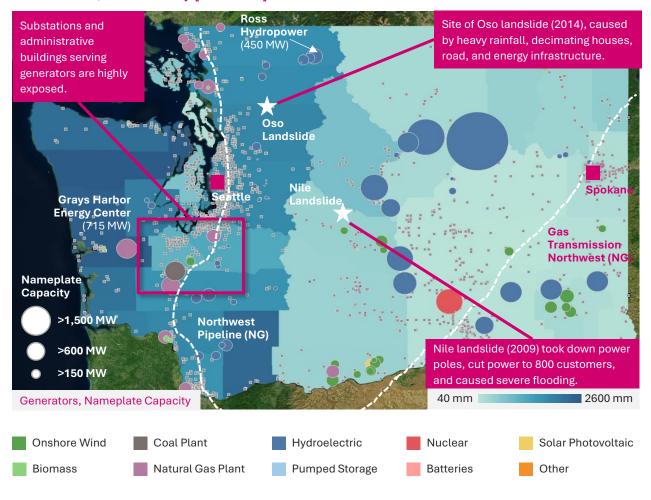
KEY OBSERVATIONS

- Most flood exposure lies in the **northwest counties** given their relatively low elevations and proximity to the coast.
- T_x and D_x substations in King and Snohomish counties have a large volume of assets with high exposure given ground-mounted equipment.

Washington Average Annual Surface Runoff (mm/year) End-Century [SSP5-8.5]

KEY OBSERVATIONS

• Flood exposure is projected to **increase in western counties** by endcentury but remains largely unchanged across eastern counties.


Flood exposure is projected to increase by 22% by end-century, posing a substantial threat to low-lying substations and weak distribution poles.

Flood exposure most acutely impacts generators located in western counties, especially hydro and natural gas assets in Whatcom, Grays Harbor, and Skamania counties

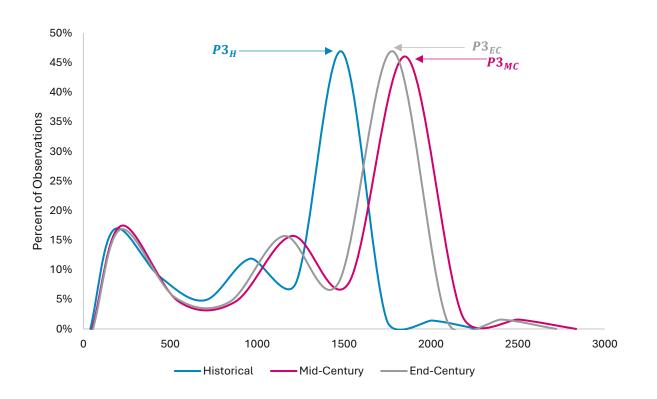
Washington Average Annual Surface Runoff (mm/year)

Generators, Mid-Century [SSP5-8.5]

 Hydro plants in Whatcom County will face high levels of flood exposure given proximity to the Skagit River. Hydro plants along Lewis River in Skamania County are exposed to high flood levels relative to the broader state. Hydroelectric Flooding can contribute to dam overtopping/failure and pose operational challenges to hydro assets. The Grays Harbor Energy Center is exposed to peak flood risk in the state. Flooding can inundate critical equipment located at ground level or below and cause plant failure. **Natural Gas** Northwest Pipeline is exposed to elevated levels of surface runoff, leaving scouring or causing potential rupture due to landslides. • Flooding causes ingress/egress complications by washing out access roads, contributing to restoration issues. · Flooding can affect on-site buildings or facilities, making it more difficult to maintain Restoration adequate staffing for oversight and restoration.

Analysis

Key Highlights

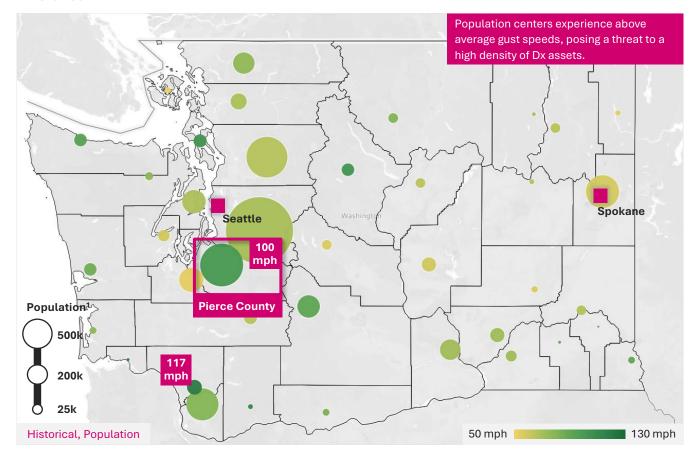

Source: ClimRR, US Census Bureau, City and Town Population Totals


29 | Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

Flood exposure is projected to increase in severity, especially in high exposure areas, increasing the likelihood of failure for assets in almost half of the state

Washington Average Annual Surface Runoff (mm/year)

Population-Weighted by County [SSP5-8.5]


Wind

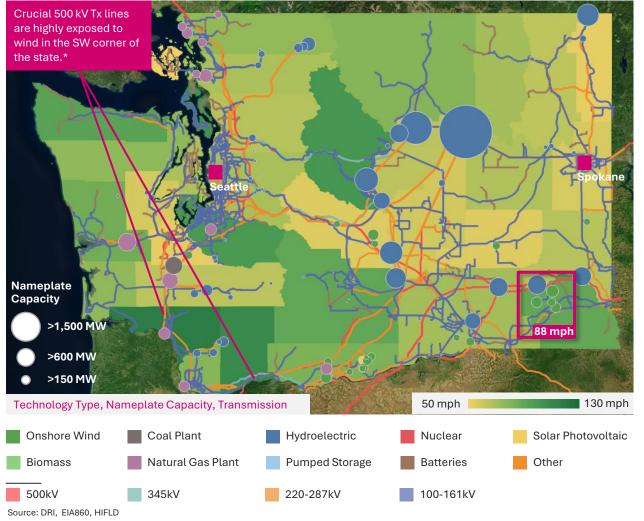
Asset Analysis

WSDOC could consider instituting upgraded design standards throughout the state to address wind exposure, especially in western counties that are highly exposed

Washington 100-year Wind Speed (mph)

Historical

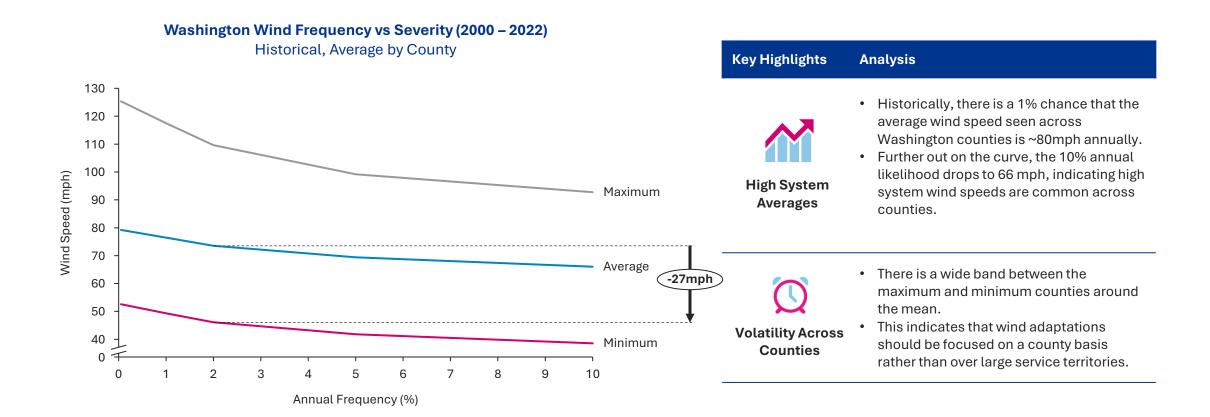
Key Highlights	Analysis	
Distribution	 Given weak climate signals, wind speeds are derived using historical data and do not vary at high spatial resolution. Rather than targeted investments, wind exposure could be addressed through upgraded design standards across a utility service territory. 	
Pierce County	 Pierce County has a population of 900k and 100-year return value of 100mph, indicating a high exposure area for Dx assets. Coincident extreme cold events put Dx lines at risk for galloping and sag. 	
(((•))) Western Counties	 Gust speeds are generally highest among the western counties in the state, especially those on the coast. WSDOC could consider funding projects including undergrounding, pole upgrades, decreasing spans, and vegetation management to address wind exposure. 	



WSDOC could consider prioritizing HV Tx lines in SE counties for structure reinforcement, and hardening wind and hydro generators in counties exposed to high wind speeds

Washington 100-year Wind Speed (mph)

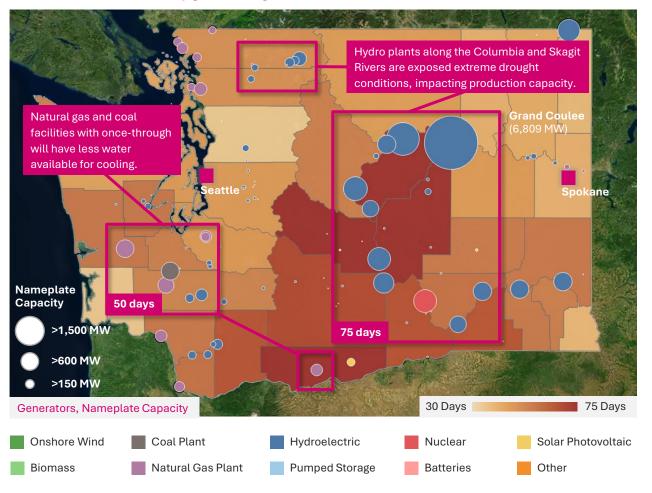
Historical

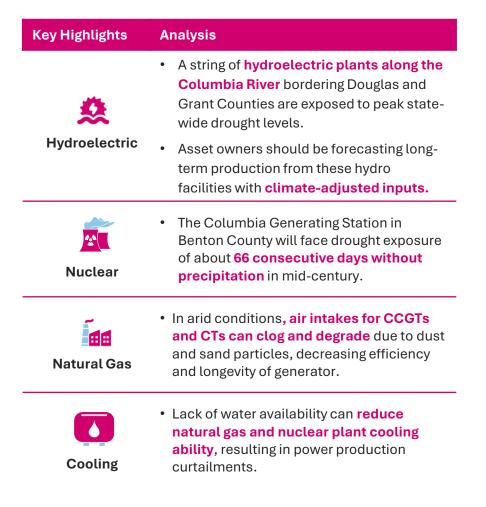


Key Highlights	Analysis	
Transmission	 A cluster of MV/HV Tx lines are highly exposed in Pierce County, making them susceptible to failure. HV import/export lines running through Cowlitz and Skamania Counties are exposed to high wind speeds, which could be prioritized for hardening given their crucial role during extreme weather events. 	
Wind	 Wind farms cutout speeds can vary between 45-70mph, indicating that in high wind speed events, the turbines stop producing. Wind farms in Columbia and Garfield Counties are exposed to 100-year return period values far greater than the cutout threshold, resulting in production curtailments. 	
E Hydroelectric	 Multiple hydroelectric plants along the Columbia River border counties with high levels of wind exposure. High wind speeds can cause debris to accumulate in the water and clog intakes or directly damage plant equipment. 	

^{*}These 500 kV lines are covered by lower voltage lines in the map

Historically, there is a 1% chance that the average wind speed seen across Washington counties is about 80mph annually.


Drought

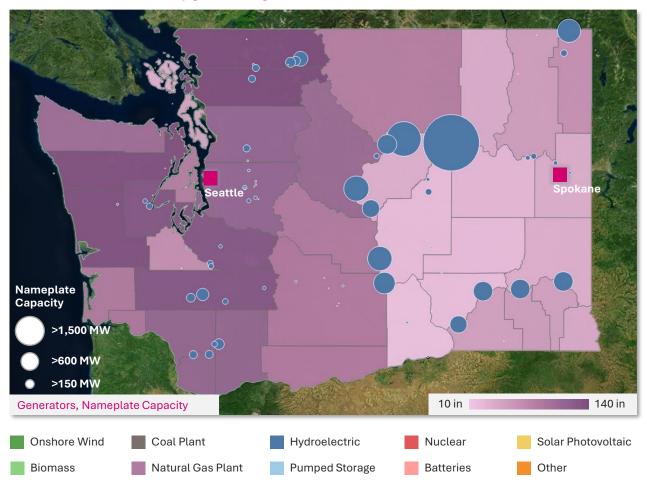

Asset Analysis

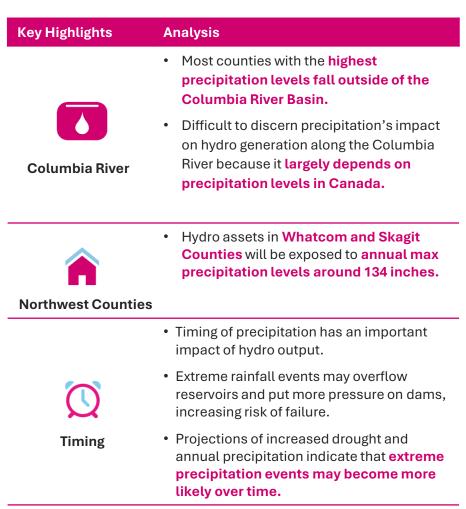
Increases in drought exposure in the central and southern regions of the state by mid-century will decrease hydro output and create cooling issues for nuclear and natural gas generators

Washington Consecutive Days No Precipitation

Generators, Mid-Century [RCP5-8.5]

Source: ClimRR, US Census Bureau, City and Town Population Totals

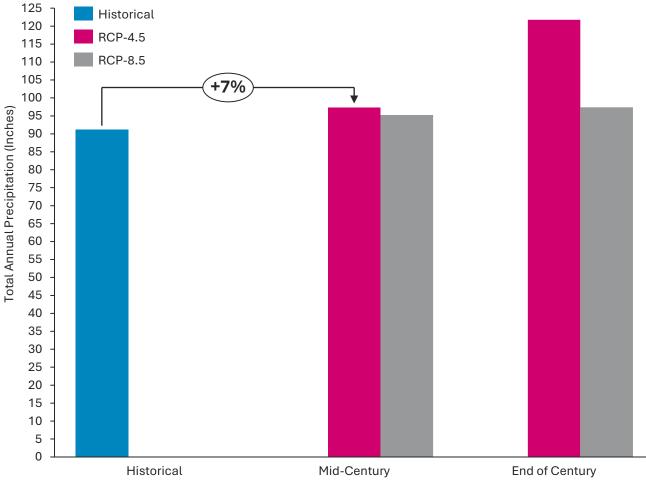

Precipitation


Asset Analysis

Hydro assets along the Columbia River border areas with low levels of projected precipitation, but the ultimate impact on output depends on upstream projections and timing

Washington Annual Max Precipitation (in)

Generators, Mid-Century [RCP5-8.5]


Source: ClimRR, US Census Bureau, City and Town Population Totals

^{38 |} Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

Total annual precipitation is projected to increase by 7% by mid-century (under RCP 4.5), and increases much more drastically under RCP 4.5 than RCP 8.5

Key Highlights	Data Analysis
Trends	Projected 7% increase in average total annual precipitation by mid-century (under RCP 4.5).
Major precipitation events	Combined with drought increases, increasing annual precipitation indicates more frequent major precipitation events and flooding.
Warming and precipitation	Precipitation increases much more drastically under RCP-4.5 than RCP-8.5, demonstrating a non-linear relationship between temperature and precipitation.

Washington Average Total Annual Precipitation (inches) Population-Weighted by County [RCP 4.5, RCP-8.5]

Appendix

Fire Weather Index synthesizes weather and moisture content data into a normalized value representing the danger of fire spread once ignition has occurred.

Structure of the Canadian Forest Fire Weather Index System

KEY TAKEAWAYS

- FWI is a useful metric for evaluating weather-based conditions that heighten the danger of wildfire spread once ignition has occurred.
- Initial Spread Index: Measures the expected rate of fire spread, based on wind speed and moisture content of fine fuels/forest litter (Fine Fuel Moisture Code).
- Buildup Index: Measures the total amount of forest fuel available for consumption, based on the moisture content of intermediate organic layers, such as decomposing plant matter (Duff Moisture Code), and the moisture content of deep organic layers and soils, which corresponds to drought measures (Drought Code).
- Daily FWI values were calculated using readings from Argonne's downscaled 12km climate data and averaged annually or seasonally across RCP-4.5 and RCP-8.5.
- Percentiles (below) were calculated based on FWI values across all
 12km grid cells in the contiguous U.S.

FWI Class	Percentile range in historical period	FWI values in Class
Low	0–25 th percentile	0–9 FWI
Medium	25–50 th percentile	9–21 FWI
High	50–75 th percentile	21–34 FWI
Very High	75–90 th percentile	34–39 FWI
Extreme	90–98 th percentile	39–53 FWI
Very Extreme	Above 98th percentile	Above 53 FWI

