GRID RESILIENCE REPORT | DISCLAIMER

Disclaimer

This document: (a) is proprietary and confidential to Baringa Services Ltd ("Baringa") and could not be disclosed to or relied upon by any third parties or re-used without Baringa's consent; (b) shall not form part of any contract nor constitute acceptance or an offer capable of acceptance; (c) excludes all conditions and warranties whether express or implied by statute, law or otherwise; (d) places no responsibility or liability on Baringa or its group companies for any inaccuracy, incompleteness or error herein; and (e) is provided in a draft condition "as is" without warranty. Any reliance upon the content shall be at user's own risk and responsibility. If any of these terms is invalid or unenforceable, the continuation in full force and effect of the remainder will not be prejudiced.

Copyright © Baringa Services Limited 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information. No part of this document may be reproduced without the prior written permission of Baringa Services Limited.

This report has been prepared by Baringa Services Ltd or a Baringa group company ("Baringa") specifically for the client named in this report ("Client") for the sole purpose of assisting the consideration of Client or interested investors ("Investors") in the potential transaction named in this report ("Transaction").

This report does not constitute a personal recommendation of Baringa or take into account the particular investment objectives, financial situations, or needs of Client or the Investors in relation to the Transaction. Client and Investors could consider whether the content of this report is suitable for their particular circumstances and, if appropriate, seek their own professional advice and carry out any further necessary investigations before deciding whether or not to proceed with the Transaction. This report could not, under any circumstances, be treated as a document containing complete and accurate information sufficient to make an investment decision. It is the responsibility of the Client and Investors to conduct such due diligence as necessary of any risk factors not identified in this report or which could affect the operation, financial standing and further development prospects of any assets being acquired, charged or sold in the Transaction. Baringa shall not be liable in any way for errors or omissions in information contained in this report based upon publicly available industry data or specific information provided by others (including Client, its affiliates, their advisers, target entity or any third parties). Baringa makes no representations or warranties (express or implied) concerning the accuracy or completeness of the information contained in this report, nor whether such information fully reflects the actual situation described in this report, and all conditions and warranties whether express or implied by statute, law or otherwise are excluded.

Information and data contained in this report is confidential and must not be disclosed to third parties by Client or Investors except as permitted in the relevant Client contract with Baringa or with the written consent of Baringa. This report may not be used in any processes involving the public offering in which shares of stock in a company are sold either privately or on a securities exchange. No part of this Report may be copied, photocopied or duplicated in any form by any means or redistributed (in whole or in part) except as permitted in the relevant Client contract with Baringa or with the written consent of Baringa. Copyright © Baringa Services Ltd 2024. All rights reserved.

Grid Resilience Reports

Utah

Energy & Resources | Networks 11/26/2024

Copyright © Baringa Partners LLP 2025. All rights reserved.

Table of contents

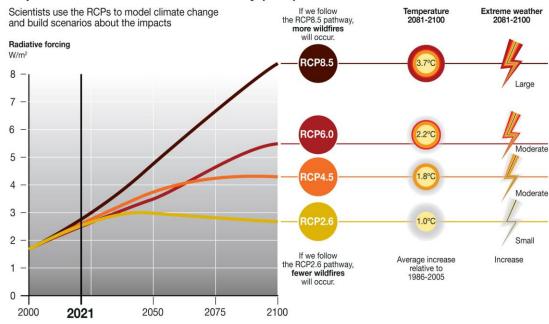
Project Context	
 Project Context & Approach 	4-6
Deliverable Overview	
Climate Science Background	8
Data Sources	9-11
Analysis Approach	12
Grid Resilience Report	
 Assets Class Overview 	14-15
 Wildfire 	16-19
• Flood	20-22
• Wind	23-26
• Heat	27-31
• Cold	32-35
• Drought	36-38
Precipitation	39-40

Grid Resilience Reports

Climate Science Background, Data Sources, and Analysis Approach

RCPs and SSPs provide viable climate pathways for an uncertain future

ipcc


Generating Emission Scenarios

- Representative concentration pathways (RCPs) project GHG concentrations: Defined by the IPCC in 2014 as scenarios of future emission concentrations and other radiative forcing that align to climate projections. 1 RCPs use assumptions relating to policy decisions and individual behavior that may change future GHG emissions concentrations. 1 SSPs have largely replaced RCPs.
- Shared socioeconomic pathways (SSPs) provide 5 'storylines' to contextualize RCPs and to provide the various future pathways possible.² They consider how the world could evolve socioeconomically and politically, including how various levels of climate change mitigation and adaptation could be achieved and will influence future climate scenarios.3
- RCPs included in the CLIMRR dataset include RCP 4.5 and RCP 8.5.
- SSPs included in the Hydrosource dataset include SSP585, SSP370, SSP245, and SSP126.

Modeling Scenario: RCP 4.5

- "Moderate" scenario: Emissions peak around 2040 and then slowly begin to decline.⁴ Temperatures warm about 3.2 °F from a 2000 baseline.⁵
- CO2 emissions plateau before falling mid-century, as energy use sharply declines and there is large scale reforestation. 6

Representative Concentration Pathway (RCP)

GRID-Arendal/Studio Atlantis, 2021

Modeling Scenario: RCP 8.5

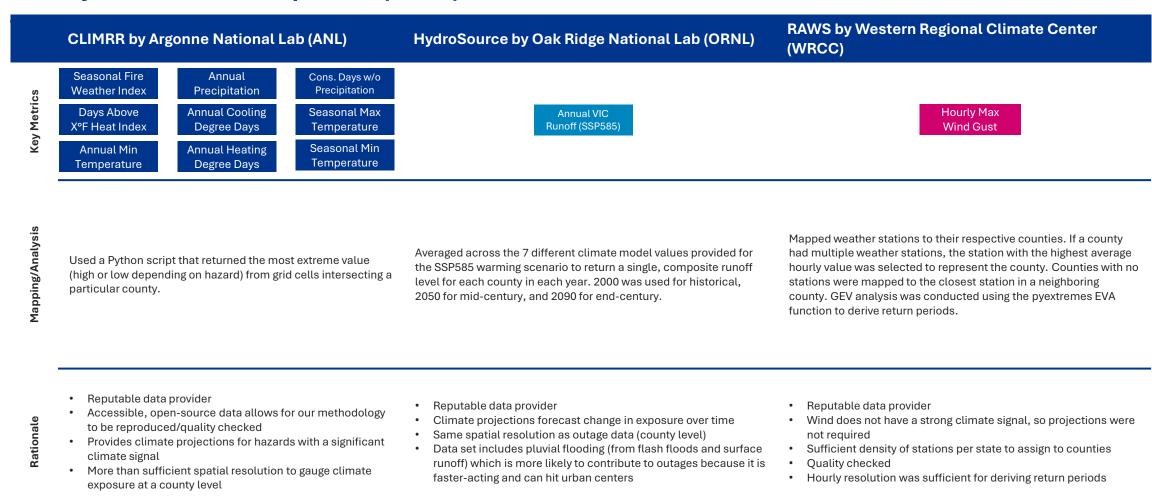
- "Rapid growth" scenario: Emissions continue to rise throughout the twenty-first century.4 Temperatures warm about 6.6 °F from a 2000 baseline. 5
- CO2 emissions are three times higher than the present by end-century, with a large increase in methane emissions and continued fossil fuel use. 6

¹ Source: ComEd Vulnerability Study 2023 ⁴ Source: Help (cal-adapt.org)

² Source: Jupiter

³ Source: Carbon Brief

⁵ CoastAdapt


⁶ Climate Copernicus

Baringa leverages national downscaled climate datasets with high granularity to assign county-level climate exposure

	CLIMRR by Argonne National Lab (ANL)	HydroSource by Oak Ridge National Lab (ORNL)	RAWS by Western Regional Climate Center (WRCC)	
Dataset Description	The Climate Risk and Resilience Portal (CLIMRR) provides highly localized climate projections from mid- to end-century using a supercomputer to model 60 climate variables.	HydroSource is a comprehensive national water energy digital platform consisting of hydropower-related data set, models, visualizations, and analytics tools.	The Wildland Fire Remote Automated Weather Stations (RAWS) data set provided by WRCC is a quality-controlled repository of hourly data for 17 select weather metrics from a network of weather stations across western states.	
Data Provider Description	Argonne National Lab is a federally-funded science and engineering research center sponsored by the Department of Energy.	Oak Ridge National Lab is a federally funded research and development center sponsored by the Department of Energy.	The Western Regional Climate Center is one of 6 Regional Climate Centers in the United States. WRCC works jointly with NOAA to coordinate climate activities and conduct applied research on climate issues in the West.	
Years	Historical, Mid-Century, End-Century	1980-2099	2000-2022	
Spatial Resolution	12 km (aggregated to county)	County	Weather station (aggregated to county)	
Hazards	RAIN FIRE HEAT COLD DROUGHT	FLOOD	WIND	

Baringa leverages national downscaled climate datasets with high granularity to assign county-level climate exposure (cont.)

Baringa is leveraging forward-looking climate projections to inform its technical assistance work for states in WECC

Wind

Source: Western Regional Climate Center (WRCC)

Input metric: Hourly max wind

speed (mph)

Output: Wind speed at key return

periods via GEV distribution

Wildfire

• Source: CLIMRR (ANL)

Input metric: Fire weather index

(FWI) by grid cell

Output: Maximum fire weather

index by county

Precipitation

Source: CLIMRR (ANL)

Input metric: Annual total precipitation (in/year) by grid cell

Output: Max annual total

precipitation (in/year) by county

Drought

Source: CLIMRR (ANL)

Input metric: Consecutive days with no precipitation by grid cell **Output:** Max consecutive days with no precipitation by county

Heat

Source: CLIMRR (ANL)

Input metrics:

- Days above 95, 105, 115, 125 °F
- Annual cooling degree days
- Seasonal maximum temperatures

Output: Input metrics applied from a grid cell level to a county level

Cold

Source: CLIMRR (ANL)

Input metrics:

- Annual minimum temperature
- · Annual heating degree days
- Seasonal minimum temperatures

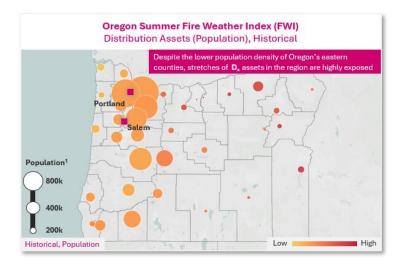
Output: Input metrics applied from a grid cell level to a county level

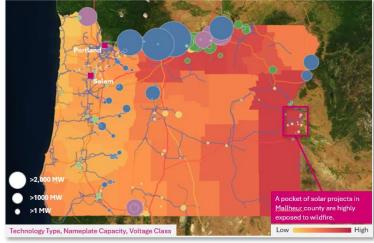
Flood

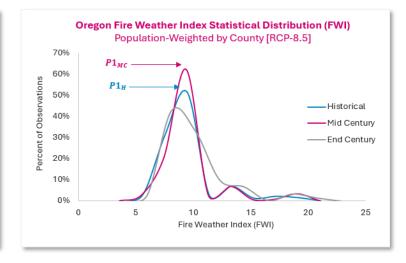
Source: Hydrosource (ORNL)

Input metric: Annual Variable
Infiltration Capacity (VIC) model

runoff (mm/year)


Output: Average annual VIC runoff (pluvial flooding) for 4 warming scenarios and 3 time periods (historical, mid-century, end-century)


This report is standardized to include 3 different data visualizations that provide insights for Distribution, Transmission, and Generation across 7 extreme weather hazards


Distribution Maps

Transmission & Generation Maps

Statistical
Distribution Graphs

- Purpose: Uses population as proxy for volume of distribution assets given that the location of distribution assets is restricted.
- Interpretation*: Locate areas of high exposure by identifying counties with coincident large bubbles and dark colors. This indicates a combination of high volume of Dx assets and significantly high extreme weather projections.
- **Purpose:** Overlays transmission and generation assets on climate projections by county.
- Interpretation: Locate areas of high exposure by identifying assets in counties of high risk. Exposure differs by asset class and will be highlighted in Key Insights tables throughout.
- Purpose: Contains statistical insights related to each metric. Indicates change in dispersion and severity of risk over time on average
- Interpretation: An increase in the width of the peak indicates a decrease in concentration of exposure, meaning more counties are exposed to more severe weather. A shift right in the curve indicates that on average, counties are experiencing more severe weather.

^{*}Note: Analysis addresses risk given volume of assets and does not account for risk to remote customers at end of radial distribution grids.

Asset Class Overviews

Executive Summaries

UOED could consider Dx hardening to address escalating wildfire risk, substation upgrades to mitigate extreme warming, and system weatherization given continued freezing risk

- Focus T&D undergrounding in S and W counties, especially in rural SW counties, Washington County, and W counties bordering population centers.

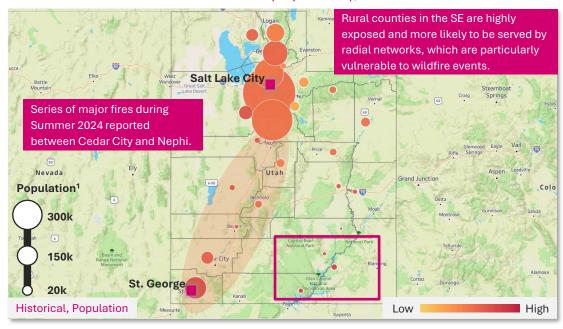
Key Takeaways			expansion of reconductoring and deployment of DER to combat generator derating due to extreme heat. Tx and Dx hardening and veg. management against cold in N counties and hardening of fossil fuel-based generators to address extreme cold			
Hazard	Exposure	Change to Mid- Century	Generation	Transmission & Distribution	AWPI*	Description
FIRE	Н		 Consider investment in innovative solar O&M processes and emergency response planning Standardized PSPS and emergency response planning could decrease restoration times. Innovative solar cleaning projects or optimized maintenance scheduling could help combat low solar capacity factors during fires. 	 Focus hardening efforts on southern and western Tx and Dx assets Tx assets in Washington, Iron, and San Juan Counties are particularly exposed. UOED could consider Dx hardening in rural SE counties as well as more populated W counties, especially those bordering population centers in the north-central region. 	М	Gen: No proposed awards address generator wildfire exposure, marking a potential area for future investment. T&D: Undergrounding and pole/line upgrade proposals addresses fire risk, only consist of 3mi. UOED could also consider vegetation management, Al monitoring tools, etc.
HEAT	Н	1	 Explore flexible DER options or innovative cooling methods to offset derating of supply DER proliferation minimizes reliance on a pocket of large thermoelectric generators that will be heavily exposed to extreme heat. Innovative thermoelectric cooling combats production derates and drought exposure. 	 Consider substation upgrades and Tx reconductoring to combat line sag and derating Significant exposure to days >105°F requires substation upgrades to avoid direct failure, especially in S and north-central counties. HV import/export lines are highly exposed in S counties and could be prioritized for hardening. 	М	Gen: No proposed awards address generator derating. T&D: No mention of substation upgrades, which can fail in extreme heat. UOED could expand approach from Project RELIEF to reconductor additional highly expose Tx lines.
COLD	М	•	Focus weatherization technologies on large generators in the central portion of the state • Natural gas and coal plants in central counties face continued exposure to icing and other cold-related failures through midcentury.	 Consider Tx and Dx hardening in N counties Rural LV lines are highly exposed in Duchesne and Uintah Counties. Population centers in the north-central region are highly exposed, posing a threat of icing to a high density of Dx assets 	М	Gen: No proposed awards address generator cold exposure. T&D: Awarded projects for pole replacement and undergrounding address cold exposure. Substation enclosures could also be considered.

UOED could prioritize substation upgrades to address flood exposure, updated wind design standards, and enhanced data collection regarding precipitation and drought patterns

Key Takeaways

- UOED could prioritize substation fortification for low-lying assets and Dx pole fortifications in north-central counties that are heavily exposed to flooding.
- Consider more rigorous design standards for wind and solar components as well as Tx structure reinforcement and Dx pole upgrades in SE counties.
- While precipitation levels are projected to increase, UOED could monitor drought and other relevant factors to assess the impact on electricity generation.

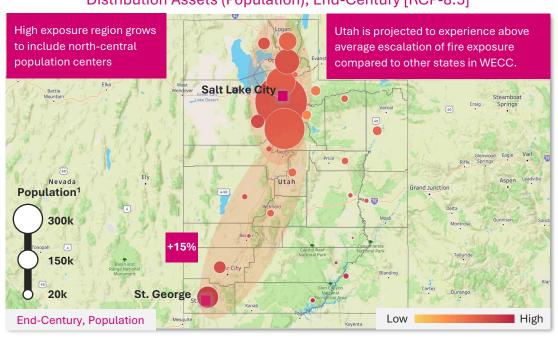
Hazard	Exposure	Change to Mid- Century	Generation	Transmission & Distribution	AWPI*	Description
≈ FLOOD	M		Most supply technologies are not significantly exposed to flood • A handful of solar plants in Iron County are significantly exposed, which can inundate inverters and other ground-based equipment, potentially causing generator failure.	 UOED could prioritize substation fortification High density of HV substations are heavily exposed to flooding in north-central counties, which can cause direct failure. UOED could also consider upgrades to weak Dx poles given increasing flood exposure. 		Gen: Lack of exposure makes gen a lower priority for investment. T&D: No projects targeting substations, unaligned with the significant substation exposure.
WIND	М	N/A	UOED could consider investments to buttress solar racking and anticipate turbine cutouts Solar plants in Beaver and Sevier Counties are exposed to high 100-year return values.	SE import/export Tx lines could be prioritized for structure reinforcement • Critical MV and HV ties are highly exposed in Beaver, Piute, and Sevier Counties	М	Gen: No wind/solar reinforcement despite significant exposure. T&D: Undergrounding & pole upgrades are aligned but veg management projects could also be considered.
DROUGHT	М	•	 UOED could consider supporting enhanced cooling and innovative panel cleaning projects SE natural gas and solar assets are heavily exposed to drought. UOED could continue to monitor drought closely given diverging projections. 	Drought exposure does not have a material impact on transmission and distribution assets.	M	Gen: Solar panel cleaning projects would allow UOED to address drought and fire risks simultaneously given high levels of exposure to all these hazards in the SE.
RAIN	L	1	UOED could seek out additional data to understand future hydroelectric production • Precipitation levels are projected to increase slightly, but UOED could consider other factors that impact hydroelectric output.	Precipitation exposure does not have a material impact on transmission and distribution assets.	M	Gen: While less urgent than other hazards, UOED could gather additional information to assess the true impact on hydro output and its implications for resource planning and scheduling.



Wildfire

Asset Analysis

UOED could continue to fund wildfire mitigation upgrades given escalating exposure over time, especially in highly exposed western counties and rural SE counties served by radial lines


Utah Summer Fire Weather Index (FWI)
Distribution Assets (Population), Historical

KEY OBSERVATIONS

- Historical wildfire exposure is concentrated in Utah's SW counties.
- High exposure counties in the west border population centers in the north-central region of the state, posing a threat of fire proliferation.
- Undergrounding and protective device proposals indicate general alignment with wildfire exposure, but UOED could also consider vegetation management projects.

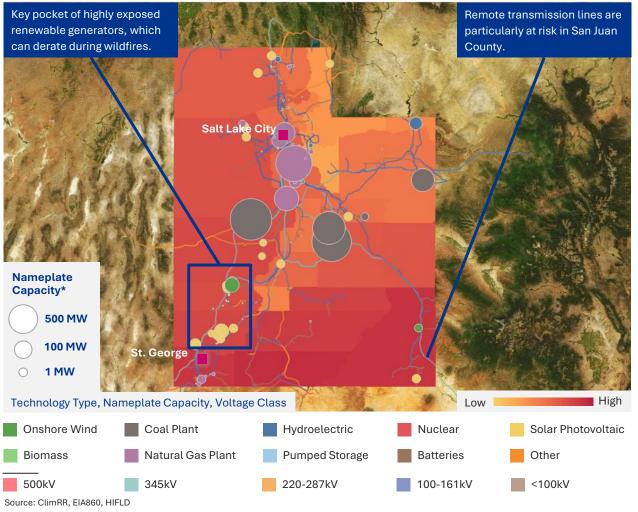
Utah Summer Fire Weather Index (FWI)Distribution Assets (Population), End-Century [RCP-8.5]

KEY OBSERVATIONS

 FWI increases by about 3-8 points across the state, demonstrating the importance of utilizing forward-looking climate projections for statewide fire mitigation planning.

Washington County

Well-populated county facing peak state wildfire exposure, presenting a potential priority area for future wildfire mitigation investment.

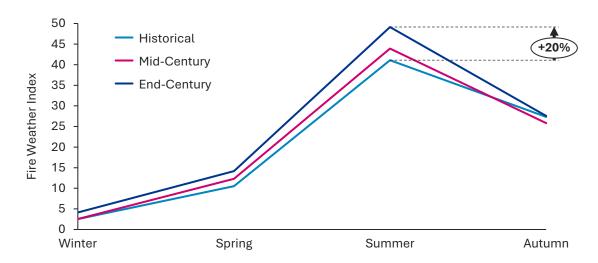

^{14 |} Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

UOED could consider prioritizing hardening for southern transmission assets and explore novel operational procedures for renewables facing derating from soot and ash

Utah Summer Fire Weather Index (FWI)

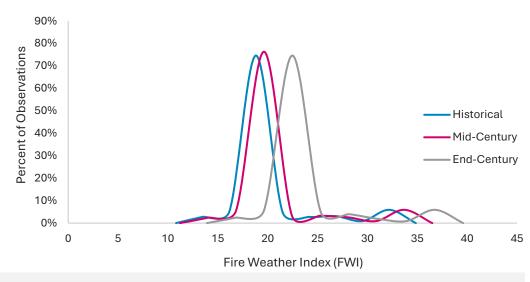
Generators & Transmission, Mid-Century [RCP-8.5]

Key Highlights Analysis Remote transmission assets are critical for last mile rural customers and are highly exposed in San Juan County. A crucial import/export HV line in Washington County is highly exposed and **Transmission** could be considered for upgrades given its key role during extreme weather events. UOED could consider vegetation management projects to address Tx wildfire exposure. Wind and solar assets across the state face high levels of wildfire exposure. Soot and ash from burns decrease capacity factors for both wind and solar assets. Renewables Very few proposed projects address generator exposure, indicating a potentially overlooked resilience topic area for the state. Wildfire causes ingress/egress issues through destruction of roads and transportation, slowing restoration times for all assets. UOED could consider funding projects Restoration addressing wildfire-related access issues given its impact across all asset classes.


^{*}Generator nameplate capacities may exceed those shown in the legend

Fire exposure is projected to increase in severity over time, especially between mid- and endcentury, lengthening the fire season and potentially shrinking the maintenance window

Utah Average Seasonal Fire Weather Index (FWI)


Population-Weighted by County [RCP-8.5]

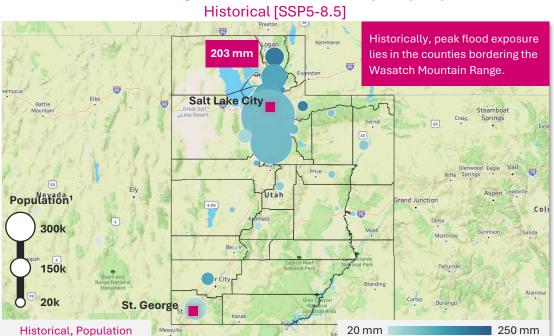
KEY OBSERVATIONS

- End-century wildfire exposure is elevated, with the sharpest increase occurring between spring and autumn by about 20% from historical FWI.
- Elevated wildfire exposure around the summer suggests a lengthening of the wildfire season combined with an increase in severity.
- The change in length of wildfire seasons suggest that the window for scheduled maintenance during the shoulder seasons is diminishing.

Utah Fire Weather Index Statistical Distribution (FWI) Population-Weighted by County [RCP-8.5]

KEY OBSERVATIONS

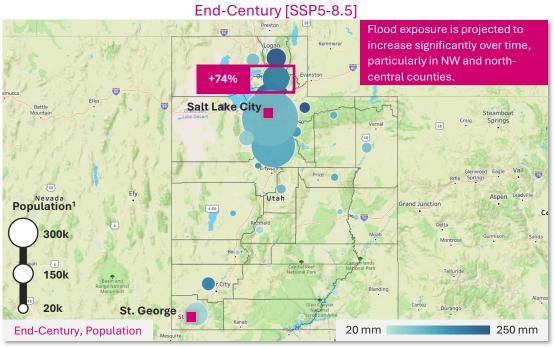
- Rightward shift of the curve by end-century indicates increasing severity of wildfire exposure over time.
- The magnitude of the shifts indicate a much larger increase in severity between mid-century and end-century than historical and mid-century.
- The bi-modal shape of the curve represents one large region of exposure between 15-25 FWI, and a smaller pocket in southern counties exposed to FWI levels from 30-40.



Flood

Asset Analysis

UOED could consider funding projects to fortify substations and distribution poles in north-central counties given the high volume of assets exposed to increasingly severe flooding


Utah Average Annual Surface Runoff (mm/year)

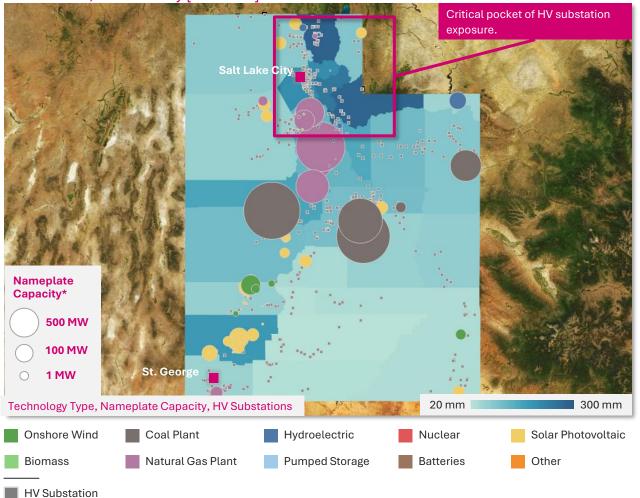
KEY OBSERVATIONS

- Most flood exposure lies in the **north-central counties** given their low elevations and proximity to mountain ranges and bodies of water.
- Davis, Weber, and Cache counties have a large volume of Dx substations with high exposure given their high population.
- Currently no proposed projects explicitly address flood exposure.

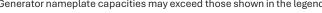
Utah Average Annual Surface Runoff (mm/year)

KEY OBSERVATIONS

 ODOE could consider funding projects to fortify low-lying Dx substations in north-central counties given the increase in flood exposure over time.


Flood exposure is projected to increase ~74% by endcentury, posing a substantial threat to a high density of substations and distribution poles.

UOED could prioritize the fortification of HV substations in a highly-exposed north-central pocket given the high density of assets facing significant exposure and their high cost of failure

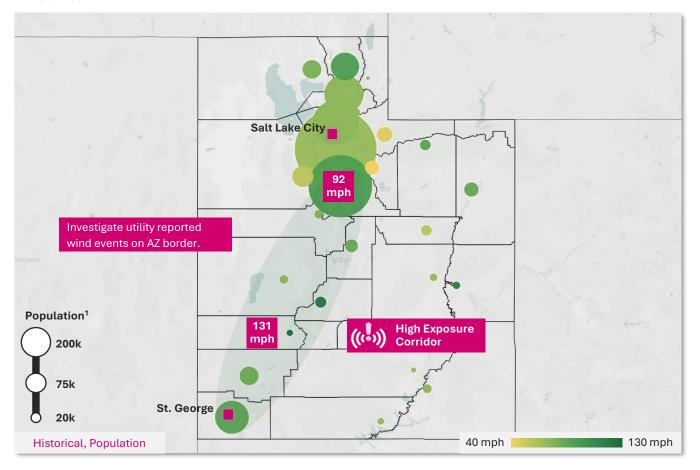

Utah Average Annual Surface Runoff (mm/year)

Generators, Mid-Century [SSP5-8.5]

Key Highlights	Analysis		
5 Substation	 High voltage substations will be exposed to pluvial flooding, with increased risk if located in a flood plain or riverbank without necessary protections. High density of HV substations in Weber and Cache Counties are heavily exposed to flood risk, marking a priority for future hardening projects. 		
Restoration	 Flooding causes ingress/egress complications by washing out access roads, contributing to restoration issues. Flooding can affect on-site buildings or facilities, making it more difficult to maintain adequate staffing for oversight and restoration. 		
E Generators	 Most generator sites are not exposed to significant flood risk, indicating that UOED could prioritize Tx & Dx projects to address the hazard. A handful of solar plants in Iron County are significantly exposed to flooding, which can inundate inverters and other ground-based equipment, causing plant failure. 		

^{*}Generator nameplate capacities may exceed those shown in the legend

Source: ClimRR, EIA860, HIFLD


Wind

Asset Analysis

UEOD could consider prioritizing vegetation management and pole reinforcement projects in highly exposed counties to mitigate damage from wind

Utah 100-year Wind Speed (mph)

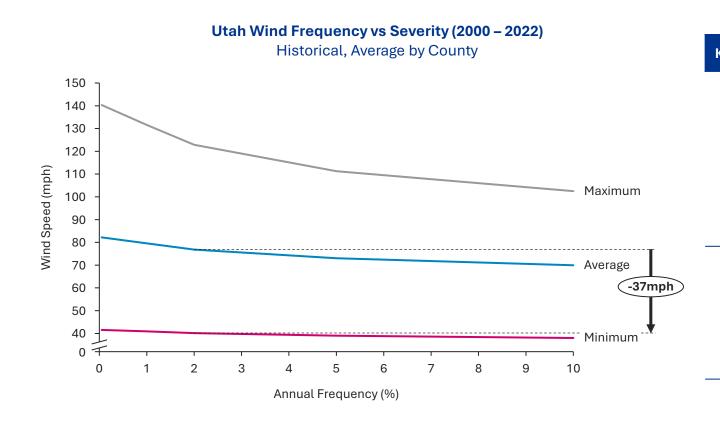
Historical

Key Highlights	Analysis
Distribution	 Given weak climate signals, wind speeds are derived using historical data and do not vary at high spatial resolution. Rather than targeted investments, wind exposure should be addressed through upgraded design standards across a utility service territory.
	 Utah County has a population of over 700k and a 100-year return value of 92 mph, indicating a high exposure area for a large volume Dx assets.
Utah County	 Coincident extreme cold events put Dx lines at risk for galloping and asset failure due to ice loading on conductors.
Beaver County	 Beaver County has the highest return value of 131 mph, indicating high failure likelihood for lower class poles. Although there might be less volume of Dx infrastructure, remote customers are at significant risk of prolonged outages.

UOED could consider prioritizing hardening projects for Tx assets and renewable generators in Beaver, Piute, and Sevier Counties to address high levels of wind exposure

Utah 100-year Wind Speed (mph)

Historical



Key Highlights	Analysis
Transmission	 A series of MV transmission lines in Beaver, Piute, and Sevier Counties are exposed to high historical wind speeds. These lines are critical for import/export capability during extreme weather events. UOED could consider reinforcing Tx structures to mitigate risk.
Solar	 Solar farms in Beaver and Sevier Counties are historically exposed to 120-130mph wind speeds at the 100-year return period. Depending on OEM, solar panels are only rated to 90 mph, indicating need for rack reinforcement and vegetation management.
Wind	 Wind farms cutout speeds can vary between 45-70 mph, indicating that in high wind speed events, there the turbines stop producing. Wind farms in Beaver County are exposed to 100-year return period values far greater than the cutout threshold, reducing generation during extreme events.

^{*}Generator nameplate capacities may exceed those shown in the legend

Historically, there is a 1% chance that the average wind speed seen across Utah counties is ~80mph annually.

Key Highlights A

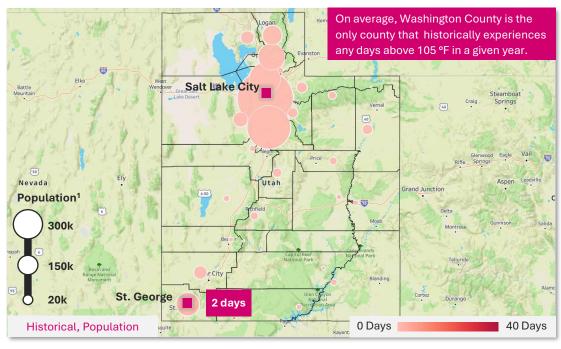
Analysis

High System Averages

- Historically, there is a 1% chance that the average wind speed seen across Utah counties is ~80 mph annually.
- The 10% annual likelihood drops to 70 mph, indicating high system wind speeds are common across counties.

Volatility Across Counties

- There is a wide band between the maximum and minimum counties around the mean.
- This range is above average compared to other states in WECC, indicating that wind adaptations could be focused on a county basis rather than over large territories.

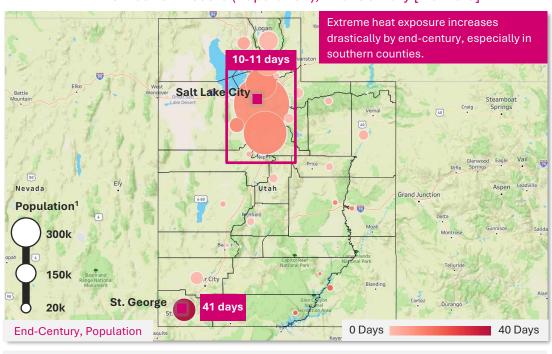


Heat

Asset Analysis

UOED could prioritize substation and Dx line upgrades in Washington County and northcentral counties to address derating, degradation, and risk of failure from extreme heat

Utah Days Above 105 °F Distribution Assets (Population), Historical


KEY OBSERVATIONS

- Currently T_x and D_x assets have minimal exposure to days above 105 °F.
- 105 °F is a particularly important threshold for distribution assets and substations, which can fail when exposed to two consecutive days above 104 °F.2

Source: ClimRR, US Census Bureau, City and Town Population Totals

25 | Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

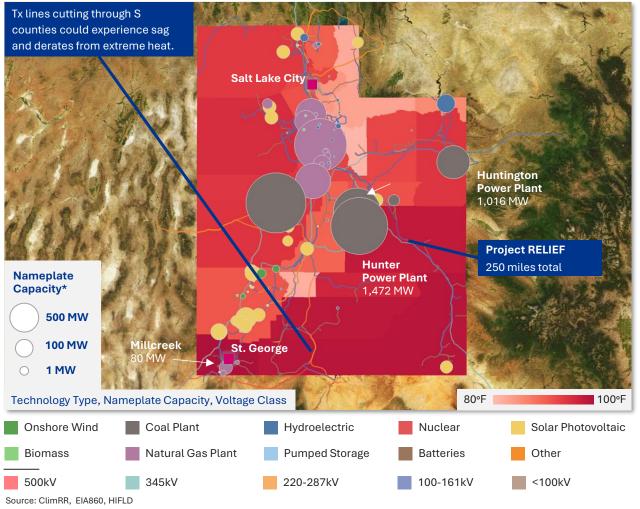
Utah Days Above 105 °F Distribution Assets (Population), End-Century [RCP-8.5]

KEY OBSERVATIONS

Highly populated counties (Utah, Salt Lake, Davis) are expected to face about 10-11 days >105 °F annually, causing high asset utilization, derating, and potential failure.

County

Washington 41 days of extreme heat exposure necessitates substation and Dx line upgrades to mitigate potential failure and avoid derating.



¹Population bubbles are continuous and therefore labels are approximate. ²EPRI Climate READi

UOED could consider Tx hardening and thermoelectric cooling upgrades in the S/SE portion of the state to combat increasing extreme heat exposure

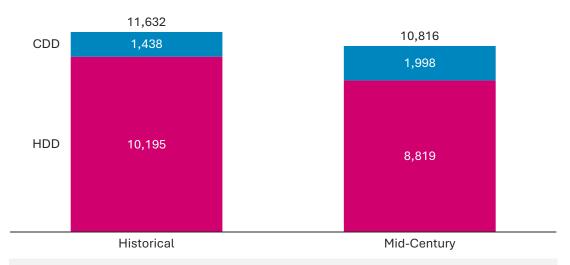
Utah Summer Average Maximum Temperature (°F)

Generators, Mid-Century [RCP-8.5]

Key Highlights Analysis

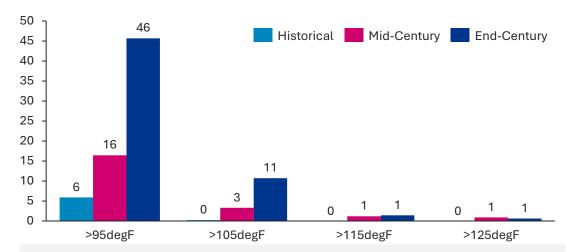
Thermoelectric generators that rely on waterbased cooling methods will experience production derates as extreme heat raises average water temperatures.

- Hunter and Huntington coal plants in Emery County are significantly exposed to extreme heat, causing derates that could have a sizeable impact on the state's energy supply given their size.
- Millcreek Power Generation Facility in Washington County faces summer average temperatures > 100 °F, which could cause significant derates for a generator located in a demand center with a large cooling load.


- All the state's 500kV Tx infrastructure is exposed to extreme heat in the SE, which can cause line sag and capacity derates.
- Project RELIEF targets large transmission line near Hunter power Plant for installation of advanced conductors to improve capacity.
- UOED could consider other adaptations to fortify longer portions of transmission lines, such as vegetation management.

^{*}Generator nameplate capacities may exceed those shown in the legend

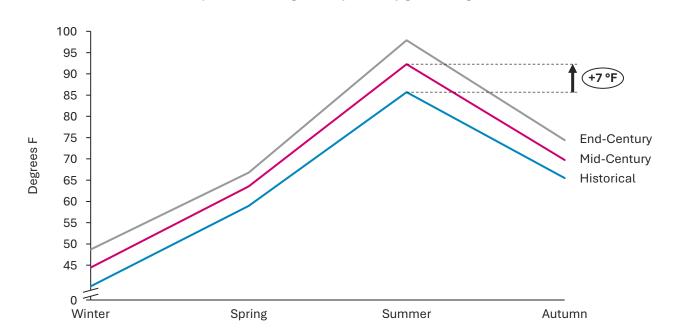
Extreme heat days will become more common in Utah, contributing to high levels of asset utilization, derating, capacity violations, and potentially direct failure for Dx substations


Utah Average Annual Cooling & Heating Degree Days (CDD & HDD) Population-Weighted by County [RCP-8.5]

KEY OBSERVATIONS

- Between historical and mid-century, the ratio of CDD to HDD
 increases, with the share of average number of CDD jumping from about
 14% to 22%.
- This results in increased summer asset utilization and degradation, but impacts to winter utilization remain unclear depending on heating electrification trends.
- Larger gap between HDD values than CDD values indicates that heating load will be more significantly impacted than cooling load.

Utah Average Annual Days Exceeding Daily Max Heat Index Thresholds
Population-Weighted by County [RCP-8.5]


KEY OBSERVATIONS

- >2x increase in days with heat index >95 °F by mid-century will likely increase asset utilization and could contribute to derating and capacity violations for transmission and thermal generating units.
- Significant increase in days > 105 °F by end-century poses a substantial risk to distribution substations, which can fail after two consecutive days above 104 °F without sufficient cooling infrastructure, indicating a potential focus area for UOED in future funding allocation processes.

Average summer temperature maximums are projected to increase by mid-century, increasing the duration and magnitude of high system utilization

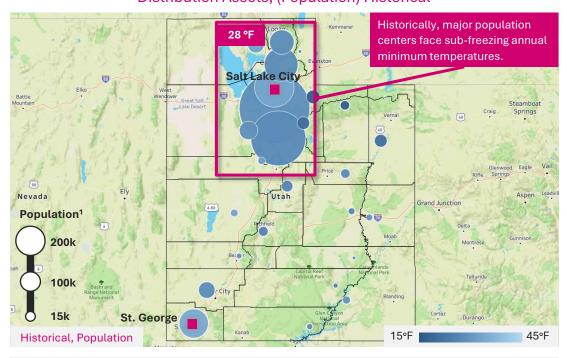
Utah Average Seasonal Maximum Temperature (°F) Population-Weighted by County [RCP-8.5]

Key Highlights Analysis

Summer Warming

Heat risk increases most drastically in summer, with a 7 °F increase in the average seasonal max by mid-century, increasing summer peaking and capacity violations.

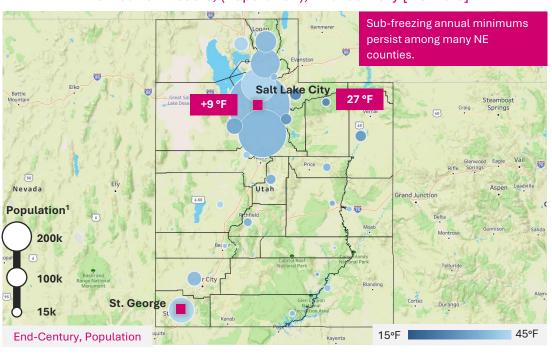
• Warming is generally less pronounced in shoulder seasons, although increased spring and autumn maximums could extend the duration of high system utilization and shorten maintenance windows.



Cold

Asset Analysis

Despite warming, UOED could consider continuing to fund Dx hardening addressing cold exposure given sustained sub-freezing annual minimum temperatures in NE counties


Utah Average Annual Minimum Temperature (°F)
Distribution Assets, (Population) Historical

KEY OBSERVATIONS

- While cold exposure is most extreme in NE counties, annual minimum temperatures are below 32°F across most of the state, indicating widespread risk of asset freezing/icing.
- Proposals including pole replacements and line upgrades address icing risk, but UOED could also consider enclosure projects.

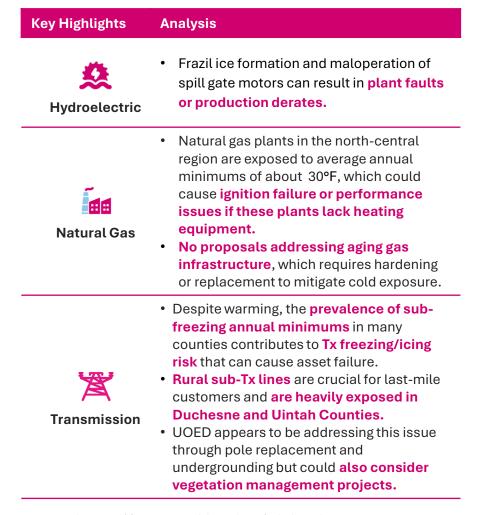
Utah Average Annual Minimum Temperature (°F)Distribution Assets, (Population), End-Century [RCP-8.5]

KEY OBSERVATIONS

Climate projections cannot predict acute extreme events like polar vortices and winter storms, **underrepresenting cold exposure.**

Summit County

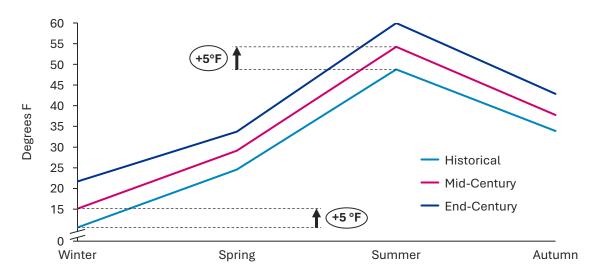
Summit County is exposed to average annual minimum temperatures of about 27 °F, indicting continued freezing exposure for Dx assets.



UOED could consider resilience upgrades to gas plants and pipeline systems to combat cold exposure, as well as continued transmission hardening addressing freezing in NE counties

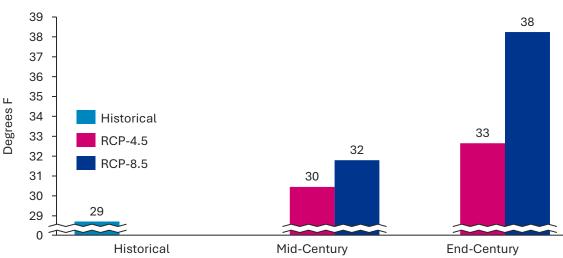
Utah Average Annual Minimum Temperature (°F)

Generators, Mid-Century [RCP-8.5]


^{*}Generator nameplate capacities may exceed those shown in the legend

Despite warming across all seasons, cold exposure will largely remain constant in the near future, indicating the UOED could continue to invest in hardening addressing freezing/icing

Utah Average Seasonal Minimum Temperature (°F)


Population-Weighted by County [RCP-8.5]

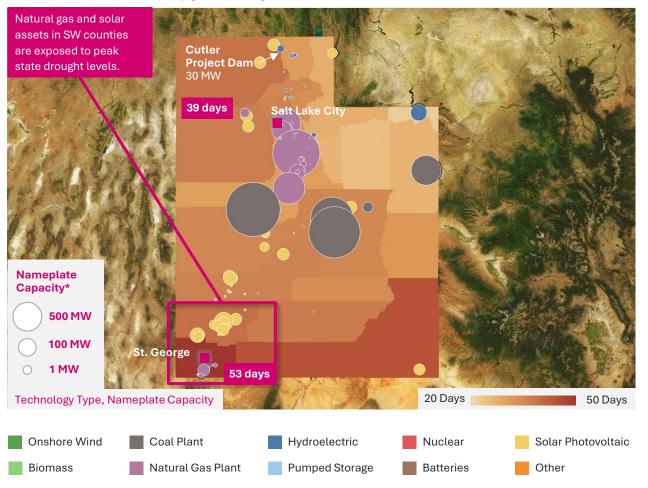
KEY OBSERVATIONS

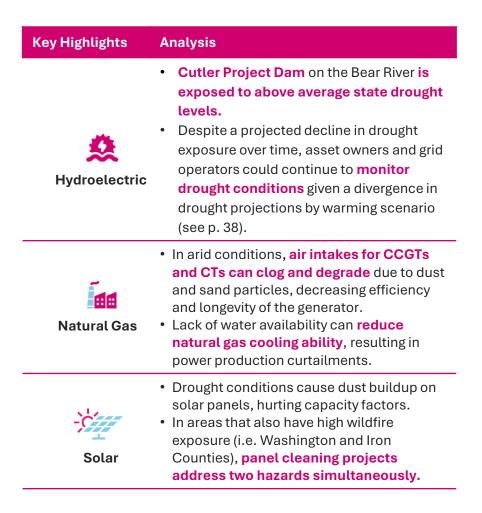
- Significant winter warming (+5 °F by mid-century) will decrease overall heating load, but the impact on electricity demand ultimately depends on the speed of heating electrification.
- Mid-century and end-century winter minimums remain below 32 °F, indicating that freezing and icing exposure persists despite warming.
- UOED could ensure that natural gas pipelines and generators are sufficiently hardened for cold given the state's increased reliance on the fuel for electricity generation.

Utah Average Annual Minimum Temperature (°F)Population-Weighted by County [RCP-4.5, RCP-8.5]

KEY OBSERVATIONS

- Minimal warming of annual min temperatures by mid-century indicates cold exposure will remain relatively constant in the near future.
- Diverging temperature projections by end-century demonstrates projection uncertainty and the importance of continued monitoring.
- Regarding extreme cold, global climate models do not resolve for extreme cold events like polar vortexes, so assets could still face similar levels of exposure to cold-related failures.

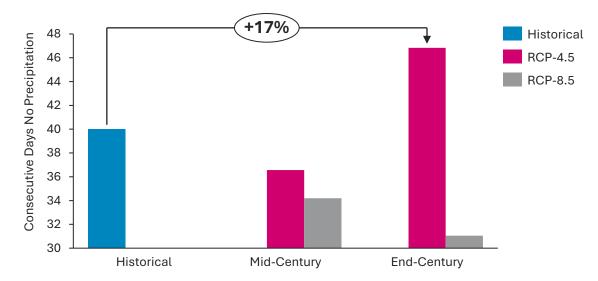

Drought


Asset Analysis

Significant drought exposure could warrant thermoelectric cooling and solar panel cleaning innovations in SE counties and continued monitoring of drought conditions on the Bear River

Utah Consecutive Days No Precipitation

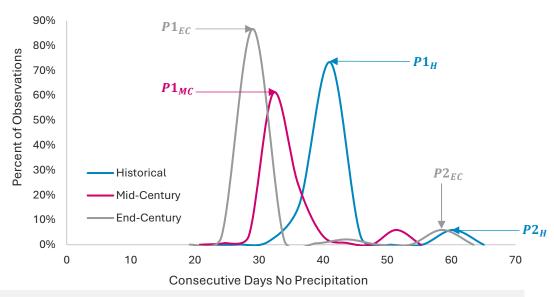
Generators, Mid-Century [RCP5-8.5]



^{*}Generator nameplate capacities may exceed those shown in the legend

Drought exposure is generally projected to decrease over time, but UOED should continue to monitor drought trends given the divergence in projections across warming scenarios

Utah Average Annual Consecutive Days with No Precipitation Population-Weighted by County [RCP 4.5, RCP-8.5]



KEY OBSERVATIONS

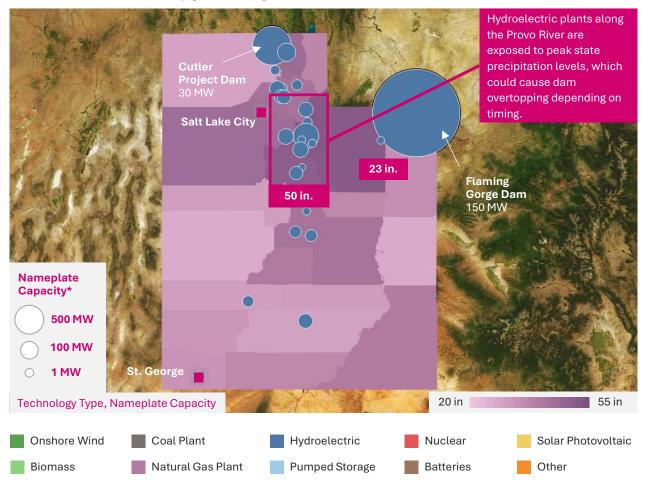
- Drought exposure increases by ~17% by end-century (under RCP 4.5), contributing to potential asset cooling failures, reduced hydroelectric generation, and solar derating resulting from dust buildup.
- Significant divergence of drought projections based on the time horizon
 and warming scenario indicates that drought risk does not scale linearly
 with temperature and could be monitored closely over time, especially
 by hydroelectric asset owners.

Utah Average Consecutive Days with No Precipitation Statistical Distribution

Population-Weighted by County [RCP-8.5]

KEY OBSERVATIONS

- The leftward shift of the curve indicates a general decline in drought severity over time, especially in the least exposed regions.
- P2 remaining in a relatively similar position between historical and endcentury indicates relatively constant levels of drought exposure for the most exposed counties (i.e. Washington, Kane, San Juan).
- P1 levels indicate that drought exposure becomes less concentrated by mid-century but more concentrated by end-century vs. historical.


Precipitation

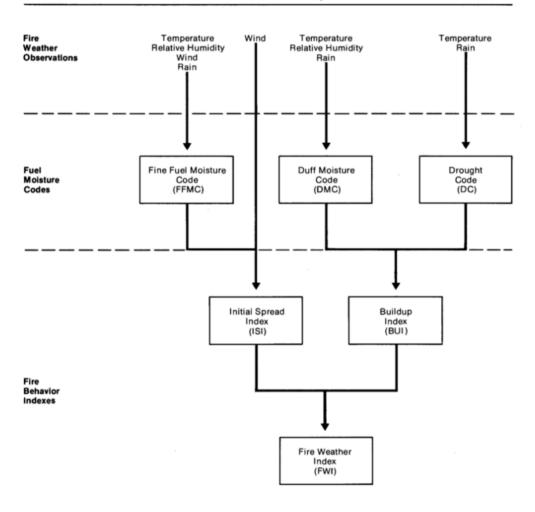
Asset Analysis

Precipitation levels increase slightly by mid-century, but UOED could consider the impacts of precipitation timing, upstream conditions, and changing snow patterns on hydro output

Utah Annual Max Precipitation (in)

Generators, Mid-Century [RCP5-8.5]

Key Highlights	Analysis
Timing	 Timing of precipitation has an important impact of hydro output. Extreme rainfall events may overflow reservoirs and put more pressure on dams, increasing risk of failure. Projections of increased annual precipitation indicate that extreme precipitation events may become more likely over time.
Upstream Coordination	 Upstream precipitation and drought will have significant impacts on hydro production. UOED could establish a relationship with WEA and IGOEMR to share information about precipitation conditions and hydro output along the Bear and Green Rivers.
Changes to Snow Patterns	 While precipitation levels are expected to increase slightly by mid-century, precipitation type and timing is likely to change and could be monitored. Grid operators could consider the impacts of less snow and earlier snow melt when conducting long-term planning.


^{*}Generator nameplate capacities may exceed those shown in the legend

Appendix

Fire Weather Index synthesizes weather and moisture content data into a normalized value representing the danger of fire spread once ignition has occurred.

Structure of the Canadian Forest Fire Weather Index System

KEY TAKEAWAYS

- FWI is a useful metric for evaluating weather-based conditions that heighten the danger of wildfire spread once ignition has occurred.
- Initial Spread Index: Measures the expected rate of fire spread, based on wind speed and moisture content of fine fuels/forest litter (Fine Fuel Moisture Code).
- Buildup Index: Measures the total amount of forest fuel available for consumption, based on the moisture content of intermediate organic layers, such as decomposing plant matter (Duff Moisture Code), and the moisture content of deep organic layers and soils, which corresponds to drought measures (Drought Code).
- Daily FWI values were calculated using readings from Argonne's downscaled 12km climate data and averaged annually or seasonally across RCP-4.5 and RCP-8.5.
- Percentiles (below) were calculated based on FWI values across all
 12km grid cells in the contiguous U.S.

FWI Class	Percentile range in historical period	FWI values in Class
Low	0–25 th percentile	0–9 FWI
Medium	25–50 th percentile	9–21 FWI
High	50–75 th percentile	21–34 FWI
Very High	75–90 th percentile	34–39 FWI
Extreme	90–98 th percentile	39–53 FWI
Very Extreme	Above 98th percentile	Above 53 FWI

