GRID RESILIENCE REPORT | DISCLAIMER

Disclaimer

This document: (a) is proprietary and confidential to Baringa Services Ltd ("Baringa") and could not be disclosed to or relied upon by any third parties or re-used without Baringa's consent; (b) shall not form part of any contract nor constitute acceptance or an offer capable of acceptance; (c) excludes all conditions and warranties whether express or implied by statute, law or otherwise; (d) places no responsibility or liability on Baringa or its group companies for any inaccuracy, incompleteness or error herein; and (e) is provided in a draft condition "as is" without warranty. Any reliance upon the content shall be at user's own risk and responsibility. If any of these terms is invalid or unenforceable, the continuation in full force and effect of the remainder will not be prejudiced.

Copyright © Baringa Services Limited 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information. No part of this document may be reproduced without the prior written permission of Baringa Services Limited.

This report has been prepared by Baringa Services Ltd or a Baringa group company ("Baringa") specifically for the client named in this report ("Client") for the sole purpose of assisting the consideration of Client or interested investors ("Investors") in the potential transaction named in this report ("Transaction").

This report does not constitute a personal recommendation of Baringa or take into account the particular investment objectives, financial situations, or needs of Client or the Investors in relation to the Transaction. Client and Investors could consider whether the content of this report is suitable for their particular circumstances and, if appropriate, seek their own professional advice and carry out any further necessary investigations before deciding whether or not to proceed with the Transaction. This report could not, under any circumstances, be treated as a document containing complete and accurate information sufficient to make an investment decision. It is the responsibility of the Client and Investors to conduct such due diligence as necessary of any risk factors not identified in this report or which could affect the operation, financial standing and further development prospects of any assets being acquired, charged or sold in the Transaction. Baringa shall not be liable in any way for errors or omissions in information contained in this report based upon publicly available industry data or specific information provided by others (including Client, its affiliates, their advisers, target entity or any third parties). Baringa makes no representations or warranties (express or implied) concerning the accuracy or completeness of the information contained in this report, nor whether such information fully reflects the actual situation described in this report, and all conditions and warranties whether express or implied by statute, law or otherwise are excluded.

Information and data contained in this report is confidential and must not be disclosed to third parties by Client or Investors except as permitted in the relevant Client contract with Baringa or with the written consent of Baringa. This report may not be used in any processes involving the public offering in which shares of stock in a company are sold either privately or on a securities exchange. No part of this Report may be copied, photocopied or duplicated in any form by any means or redistributed (in whole or in part) except as permitted in the relevant Client contract with Baringa or with the written consent of Baringa. Copyright © Baringa Services Ltd 2024. All rights reserved.

Grid Resilience Reports

Idaho OER

Energy & Resources | Networks 11/12/2024

Copyright © Baringa Partners LLP 2025. All rights reserved.

Table of contents

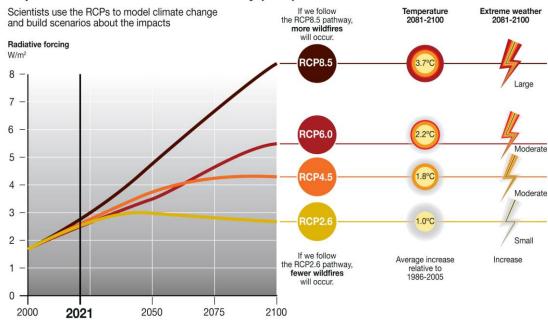
Project Context	
 Project Context & Approach 	4-6
Deliverable Overview	
Climate Science Background	8
Data Sources	9-11
Analysis Approach	12
Grid Resilience Report	
Assets Class Overview	13-15
Wildfire	16-19
• Flood	20-22
• Wind	23-26
• Heat	27-31
• Cold	32-35
• Drought	36-38
Precipitation	39-40

Grid Resilience Reports

Climate Science Background, Data Sources, and Analysis Approach

RCPs and SSPs provide viable climate pathways for an uncertain future

ipcc


Generating Emission Scenarios

- Representative concentration pathways (RCPs) project GHG concentrations: Defined by the IPCC in 2014 as scenarios of future emission concentrations and other radiative forcing that align to climate projections. 1 RCPs use assumptions relating to policy decisions and individual behavior that may change future GHG emissions concentrations. 1 SSPs have largely replaced RCPs.
- Shared socioeconomic pathways (SSPs) provide 5 'storylines' to contextualize RCPs and to provide the various future pathways possible.² They consider how the world could evolve socioeconomically and politically, including how various levels of climate change mitigation and adaptation could be achieved and will influence future climate scenarios.3
- RCPs included in the CLIMRR dataset include RCP 4.5 and RCP 8.5.
- SSPs included in the HydroSource dataset include SSP585, SSP370, SSP245, and SSP126.

Modeling Scenario: RCP 4.5

- "Moderate" scenario: Emissions peak around 2040 and then slowly begin to decline.⁴ Temperatures warm about 3.2 °F from a 2000 baseline.⁵
- CO2 emissions plateau before falling mid-century, as energy use sharply declines and there is large scale reforestation. 6

Representative Concentration Pathway (RCP)

GRID-Arendal/Studio Atlantis, 2021

Modeling Scenario: RCP 8.5

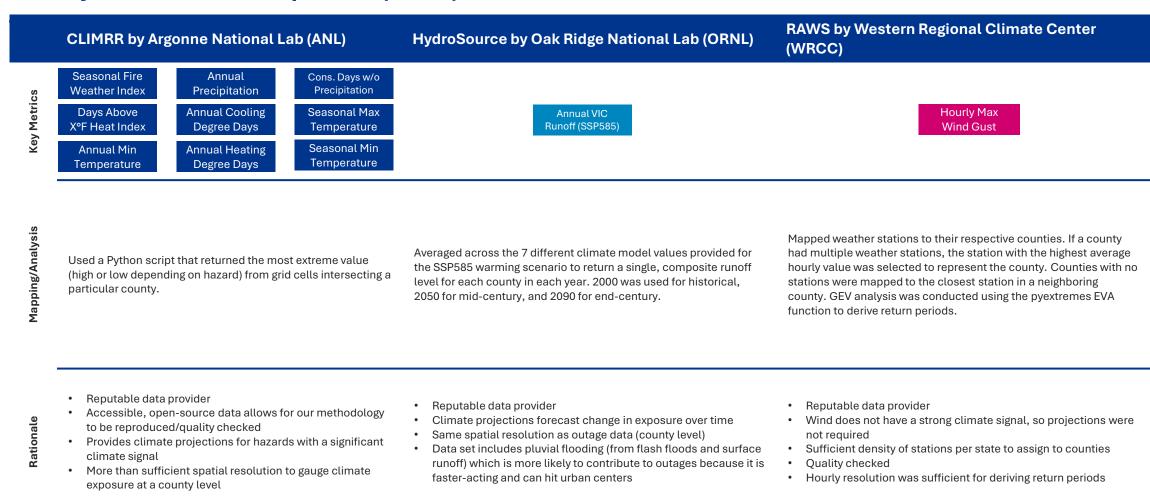
- "Rapid growth" scenario: Emissions continue to rise throughout the twenty-first century.4 Temperatures warm about 6.6 °F from a 2000 baseline. 5
- CO2 emissions are three times higher than the present by end-century, with a large increase in methane emissions and continued fossil fuel use. 6

¹ Source: ComEd Vulnerability Study 2023 ⁴ Source: Help (cal-adapt.org)

² Source: Jupiter

³ Source: Carbon Brief

⁵ CoastAdapt


⁶ Climate Copernicus

Baringa leverages national downscaled climate datasets with high granularity to assign county-level climate exposure

	CLIMRR by Argonne National Lab (ANL)	HydroSource by Oak Ridge National Lab (ORNL)	RAWS by Western Regional Climate Center (WRCC)	
Dataset Description	The Climate Risk and Resilience Portal (CLIMRR) provides highly localized climate projections from mid- to end-century using a supercomputer to model 60 climate variables.	HydroSource is a comprehensive national water energy digital platform consisting of hydropower-related data set, models, visualizations, and analytics tools.	The Wildland Fire Remote Automated Weather Stations (RAWS) data set provided by WRCC is a quality-controlled repository of hourly data for 17 select weather metrics from a network of weather stations across western states.	
Data Provider Description	Argonne National Lab is a federally-funded science and engineering research center sponsored by the Department of Energy.	Oak Ridge National Lab is a federally funded research and development center sponsored by the Department of Energy.	The Western Regional Climate Center is one of 6 Regional Climate Centers in the United States. WRCC works jointly with NOAA to coordinate climate activities and conduct applied research on climate issues in the West.	
Years Covered	Historical, Mid-Century, End-Century	1980-2099	2000-2022	
Spatial Resolution	12 km (aggregated to county)	County	Weather station (aggregated to county)	
Hazards	RAIN FIRE HEAT COLD DROUGHT	FLOOD	WIND	

Baringa leverages national downscaled climate datasets with high granularity to assign county-level climate exposure (cont.)

Baringa is leveraging forward-looking climate projections to inform its technical assistance work for states in WECC

Wind

Source: Western Regional Climate Center (WRCC)

Input metric: Hourly max wind

speed (mph)

Output: Wind speed at key return

periods via GEV distribution

Wildfire

• Source: CLIMRR (ANL)

Input metric: Fire weather index

(FWI) by grid cell

Output: Maximum fire weather

index by county

Precipitation

Source: CLIMRR (ANL)

Input metric: Annual total precipitation (in/year) by grid cell

Output: Max annual total

precipitation (in/year) by county

Drought

Source: CLIMRR (ANL)

Input metric: Consecutive days with no precipitation by grid cell **Output:** Max consecutive days with no precipitation by county

Heat

Source: CLIMRR (ANL)

Input metrics:

- Days above 95, 105, 115, 125 °F
- Annual cooling degree days
- Seasonal maximum temperatures

Output: Input metrics applied from a grid cell level to a county level

Cold

Source: CLIMRR (ANL)

Input metrics:

- · Annual minimum temperature
- · Annual heating degree days
- Seasonal minimum temperatures

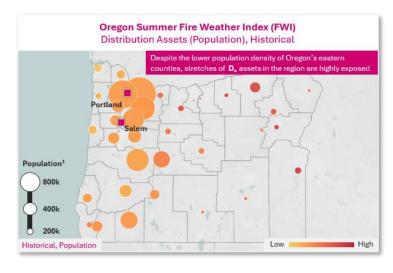
Output: Input metrics applied from a grid cell level to a county level

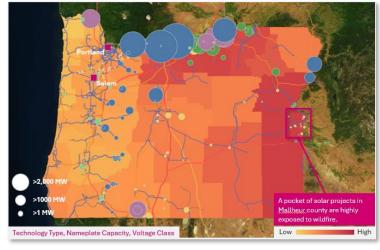
Flood

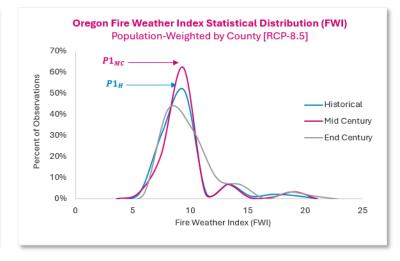
Source: Hydrosource (ORNL)

Input metric: Annual Variable Infiltration Capacity (VIC) model

runoff (mm/year)


Output: Average annual VIC runoff (pluvial flooding) for 4 warming scenarios and 3 time periods (historical, mid-century, end-century)


This report is standardized to include 3 different data visualizations that provide insights for Distribution, Transmission, and Generation across 7 extreme weather hazards


Distribution Maps

Transmission & Generation Maps

Statistical
Distribution Graphs

- Purpose: Uses population as proxy for volume of distribution assets given that the location of distribution assets is restricted.
- Interpretation*: Locate areas of high exposure by identifying counties with coincident large bubbles and dark colors. This indicates a combination of high volume of distribution (Dx) assets and significantly high extreme weather projections.
- **Purpose:** Overlays transmission and generation assets on climate projections by county.
- Interpretation: Locate areas of high exposure by identifying assets in counties of high risk. Exposure differs by asset class and will be highlighted in Key Insights tables throughout.
- Purpose: Contains statistical insights related to each metric. Indicates change in dispersion and severity of risk over time on average
- Interpretation: An increase in the width of the peak indicates a decrease in concentration of exposure, meaning more counties are exposed to more severe weather. A shift right in the curve indicates that on average, counties are experiencing more severe weather.

^{*}Note: Analysis addresses risk given volume of assets and does not account for risk to remote customers at end of radial distribution grids.

Asset Class Overviews

IGOEMR could consider prioritizing heat and fire resilience upgrades in the SE, while projects addressing cold exposure could be concentrated in the eastern counties

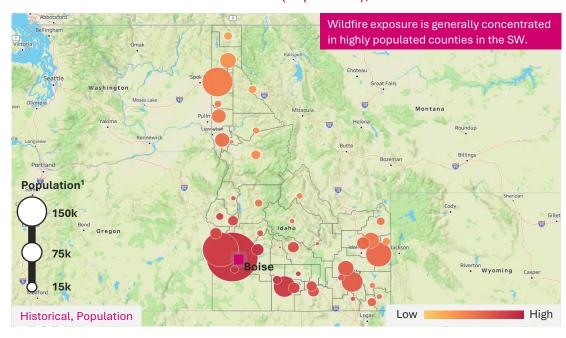
Key Takeaways

- Consider new programs addressing generator wildfire exposure and focus T&D hardening on SW counties and transmission junctions.
- Explore DER opportunities to combat derating from heat and consider funding substation upgrade projects to mitigate the risk of direct asset failure.
- Consider new weatherization programs for highly exposed generators and prioritize T&D hardening in eastern population centers.

Hazard	Exposure	Change to Mid- Century	Generation	Transmission & Distribution	AWPI*	Description
FIRE	Н	•	 Consider projects to combat soot/ash and harden operational facilities in SE counties Explore potential O&M practices that combat derates for wind and solar from ash and soot. Harden control houses and operational infrastructure for hydro and natural gas assets in SW counties exposed to fire. 	 Focus hardening efforts in SW counties and consider Dx pole upgrades Several population centers in the SW are heavily exposed to wildfire, posing a threat to a high volume of Dx assets. MV/HV lines in Elmore, Ada, and Owyhee Counties could be prioritized for hardening. 	М	Gen: No proposed awards address generator wildfire exposure, marking a potential area for future investment. T&D: Prevalence of undergrounding, veg management, and monitoring proposals address fire, but IGOEMR could also consider Dx pole upgrades.
HEAT	М	1	Explore flexible DER options to offset derating of supply DER proliferation could minimize reliance on a band of highly exposed natural gas and solar generators in the SW.	 Consider substation upgrades and more costeffective Tx hardening methods Significant exposure to days >105 °F requires substation upgrades to avoid direct failure. Widespread heat exposure necessitates upgrades that harden longer segments of HV transmission lines to combat capacity derates. 	М	Gen: No proposed awards for DERs or generator heat exposure mitigation. T&D: Undergrounding and veg management proposals address heat, but IGOEMR could consider substation upgrades given extreme heat exposure and a high likelihood of failure.
COLD	М	•	Consider weatherizing natural gas plants and pipeline systems to combat cold exposure Many generators face continued exposure to icing and other cold-related failures. Highly exposed hydro and wind assets could also be prioritized for resilience upgrades.	Prioritize investments in eastern and north-central regions of the state Peak cold exposure coincides with a pocket of relatively populated eastern counties, posing a threat of Dx and Tx icing and asset failure. IGOEMR could evaluate whether current investments align with geographic exposure.	М	Gen: No proposed awards address generator cold exposure. T&D: Undergrounding addresses cold exposure, but Dx pole upgrades would more effectively address icing risk.

IGOEMR could consider substation and pole upgrades to address flood and wind exposure, and prioritize data collection to better understand future drought and precipitation impacts

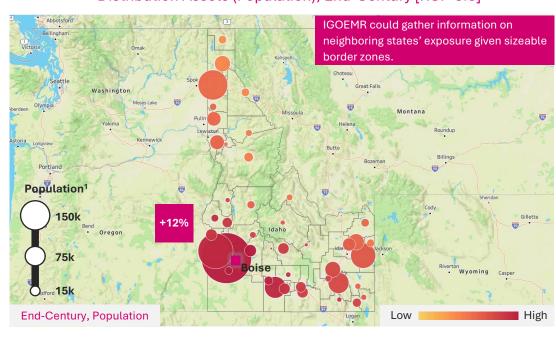
- IGOEMR could prioritize substation fortification for low-lying assets in northern counties that are heavily exposed to flooding.
- Consider prioritizing Dx pole upgrades, Tx structure reinforcements, and enhanced wind design standards to address exposure in SW counties.
- Consider gathering additional data regarding drought and precipitation exposure to better asses the impact on hydroelectric output.


Hazard	Exposure	Change to Mid- Century	Generation	Transmission & Distribution	AWPI*	Description
≈ FLOOD	М		Most electricity generation technologies are not significantly exposed to flood Hydro generators in northern counties are significantly exposed, which can cause dam overtopping and operational issues.	 IGOEMR could prioritize substation and Dx fortifications in northern counties High density of HV substations are heavily exposed to flooding, which can cause direct failure with a high cost of replacement. 	L	Gen: Lack of exposure makes gen a lower priority for investment. T&D: No projects targeting substations, despite significant exposure. Undergrounding may increase T&D flood exposure.
WIND	М	>	 Consider encouraging the use of generator components rated for higher wind speeds Solar plants in the SW are highly exposed to wind, and some panels are only rated to 90 mph. 	 IGOEMR could prioritize Dx pole upgrades and Tx structure reinforcement in SW counties High density of Dx assets are exposed to peak state wind exposure in SW counties MV/HV Tx lines passing through Ada and Gem counties are highly exposed to wind. 	М	Gen: No projects addressing generator exposure. T&D: Undergrounding addresses wind exposure but is restricted to short distances given its high cost.
P DROUGHT	М	1	 Grid operators could consider using climate-adjust inputs for hydro output forecasting Drought forecasts range from 40% increases to 40% decreases across the state. ID's heavy reliance on hydro generation means potential hydro output decreases could factor into resource planning. 	Drought exposure does not have a material impact on transmission and distribution assets.	М	Gen: No projects addressing generator exposure. IGOEMR could consider solar O&M processes to address production derates from drought (these adaptations also address heat and fire).
RAIN	L	>	 IGOEMR could seek out additional data to understand future hydroelectric production Coordinate with WSDOC and ODOE to gather information about upstream conditions. Consider the effect of warming on snow volume and melt timing. 	Precipitation exposure does not have a material impact on transmission and distribution assets.	М	Gen: No projects addressing generator exposure, but IGOEMR could gather additional information to assess the true impact on hydro output and its implications for resource planning and scheduling.

Wildfire

Asset Analysis

IGOEMR could evaluate whether current fire mitigation investments align with geographic exposure in the SW and consider other adaptation strategies such as pole upgrades


Idaho Summer Fire Weather Index (FWI)
Distribution Assets (Population), Historical

KEY OBSERVATIONS

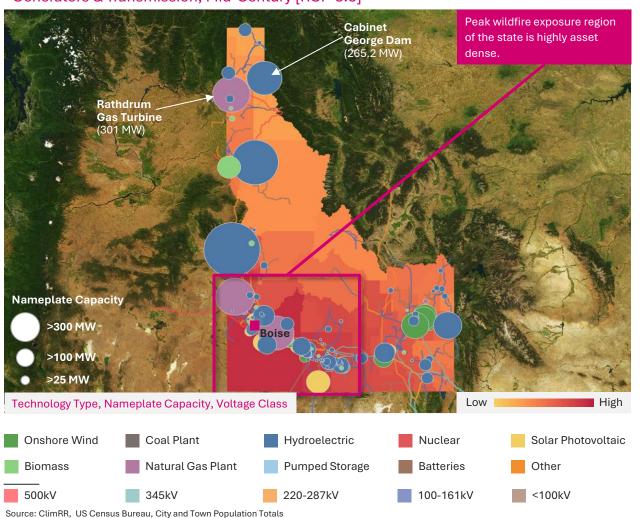
- Several population centers in the SW are highly exposed to wildfire, posing a threat to a high volume of Dx assets in the state.
- High percentage of undergrounding, vegetation management, and monitoring proposals address wildfire exposure.
- IGOEMR could evaluate whether current fire mitigation investments align with geographic fire exposure.

Idaho Summer Fire Weather Index (FWI)
Distribution Assets (Population), End-Century [RCP-8.5]

KEY OBSERVATIONS

 FWI increases about 10-25% across the state by end-century, demonstrating the importance of utilizing forward-looking climate projections for state-wide fire mitigation planning.

Ada County Large population center exposed to high levels of FWI (~50 by end-century), indicating a priority area for future Dx hardening and vegetation management projects.


^{14 |} Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

IGOEMR could consider prioritizing hardening for Tx and generator operational facilities in SW counties, and explore methods to combat renewables derating from soot and ash

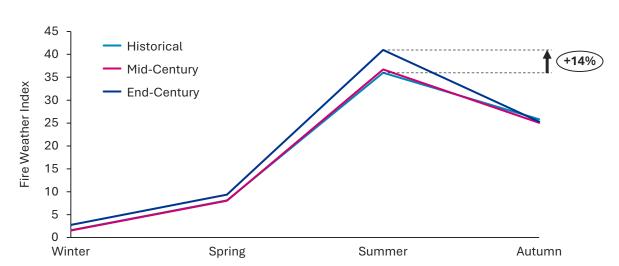
Idaho Summer Fire Weather Index (FWI)

Generators & Transmission, Mid-Century [RCP-8.5]

Key Highlights Analysis Wind and solar assets in Owyhee and surrounding SW counties face high levels of wildfire exposure. Soot and ash from burns decrease capacity factors for both wind and solar assets. Renewables Very few proposed projects address generator exposure, indicating a potentially overlooked resilience topic area for the state. Remote transmission assets are critical for last mile rural customers and are highly exposed in SW counties.

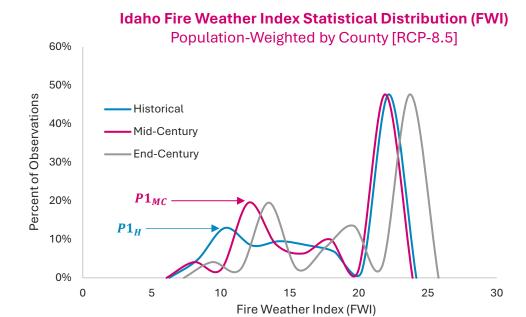
• High density of MV/HV lines in Elmore, Ada, and Owyhee Counties are heavily exposed to wildfire and could be prioritized for hardening upgrades.

- Wildfire causes ingress/egress issues through destruction of roads and transportation, slowing restoration times for all assets.
- Wildfire poses a threat to control houses and other operational infrastructure for electricity generation facilities, prolonging outages.



^{15 |} Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

By mid-century, fire exposure will increase in the least exposed regions, and by end-century exposure will become more severe across the state


Idaho Average Seasonal Fire Weather Index (FWI)

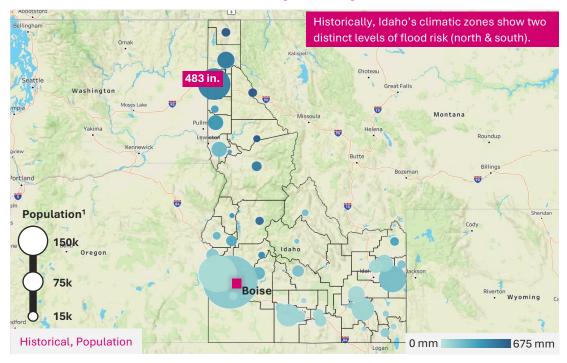
Population-Weighted by County [RCP-8.5]

KEY OBSERVATIONS KEY

- End-century wildfire exposure is elevated, with the sharpest increase occurring between Spring and Autumn by about 14% from historical FWI.
- Elevated wildfire exposure around the summer suggests a lengthening of the wildfire season combined with an increase in severity.
- The change in length of wildfire seasons suggests that the window for scheduled maintenance during the shoulder seasons could be diminishing.

KEY OBSERVATIONS

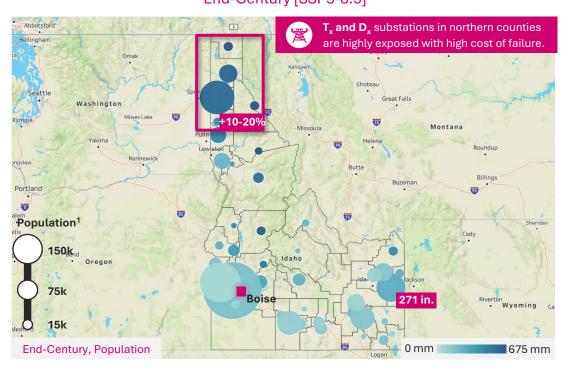
- Rightward shift of the curve by end-century indicates that wildfire exposure will become more severe over time.
- The tri-modal shape of the curve represents three regions of the state that face distinct levels of fire risk given differences in climate zones.
- Peak 1 (P1) shifting right and up by mid-century indicates that fire
 exposure will increase across previously least exposed regions,
 indicating a potentially overlooked area for fire mitigation investment.



Flood

Asset Analysis

IGOEMR could consider funding projects to fortify Dx infrastructure in northern counties given the high volume of assets exposed to increasingly severe flooding over time


Idaho Average Annual Surface Runoff (mm/year)
Historical [SSP5-8.5]

KEY OBSERVATIONS

- Most flood exposure lies in the northern counties given their relatively low elevations and high density of rivers and lakes.
- IGOEMR could consider evaluating whether undergrounding projects are being implemented in regions highly exposed to flooding and consider if these projects increase the likelihood of flood-related failure.

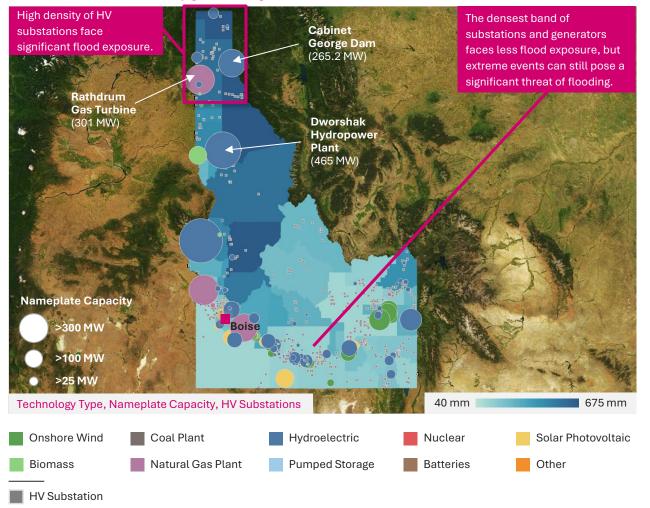
Idaho Average Annual Surface Runoff (mm/year)
End-Century [SSP5-8.5]

KEY OBSERVATIONS

• IGEOMR could consider funding projects to fortify low-lying Dx substations in N counties given the increase in flood exposure over time.

Populous county exposed to high levels of flooding, posing a threat to a high volume of unfortified Dx substation and poles.

Source: ClimRR, US Census Bureau, City and Town Population Totals


18 | Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

IGOEMR could prioritize the fortification of high voltage substations in northern counties given the high density of assets facing significant exposure and their high cost of failure

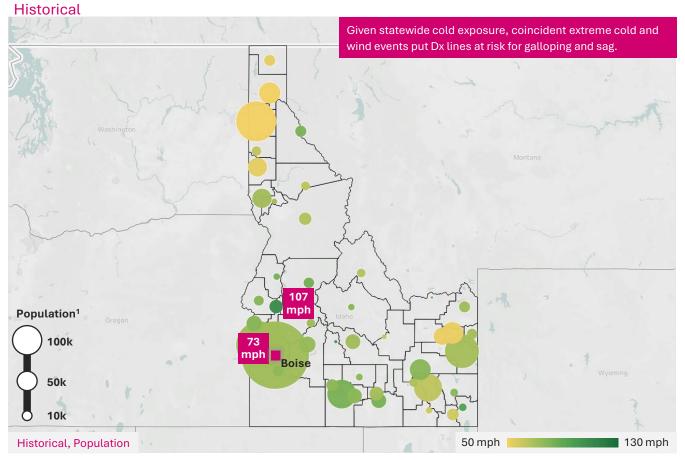
Idaho Average Annual Surface Runoff (mm/year)

Generators, Mid-Century [SSP5-8.5]

Key Highlights Analysis • High voltage substations will be exposed to fluvial flooding if located in a flood plain or riverbank without necessary protections. High density of HV substations in Substation **Shoshone and Bonner Counties are** heavily exposed to flood risk, marking a priority area for future hardening projects. • Flooding causes ingress/egress complications by washing out access roads, contributing to restoration issues. Flooding can affect on-site buildings or Restoration facilities, making it more difficult to maintain adequate staffing for oversight and restoration. Large hydroelectric plants in Bonner and Clearwater Counties are significantly exposed to flood, which can contribute to dam overtopping/failure and pose a threat to control houses. Generators The Rathdrum Gas Turbine is high exposed to flooding, which can inundate critical equipment, causing plant failure.

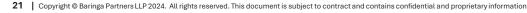
Source: ClimRR, US Census Bureau, City and Town Population Totals

19 | Copyright © Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information



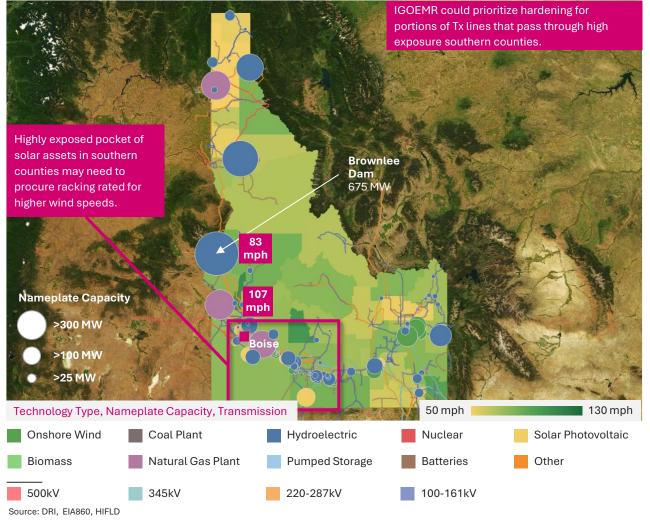
Wind

Asset Analysis


IGOEMR could encourage utilities to adopt upgraded wind design standards and consider Dx pole upgrade projects for highly-populated SW counties

Idaho 100-year Wind Speed (mph)

Key Highlights	Analysis		
Distribution	 Given weak climate signals, wind speeds are derived using historical data and do not vary at high spatial resolution. Rather than targeted investments, wind exposure could be addressed through upgraded design standards across a utility service territory. 		
Ada County	 Ada County has a population of over 500k and 100-year return value of 73 mph, indicating a high exposure area for Dx assets. High wind speeds can also contribute to fire proliferation in this region. 		
(((i))) SW Counties	 SW counties generally exhibit high wind gust speeds and population levels, exposing a high volume of Dx assets. IGOEMR's undergrounding and veg management projects generally address wind exposure, but Dx pole upgrades could also be considered in high exposure regions. 		

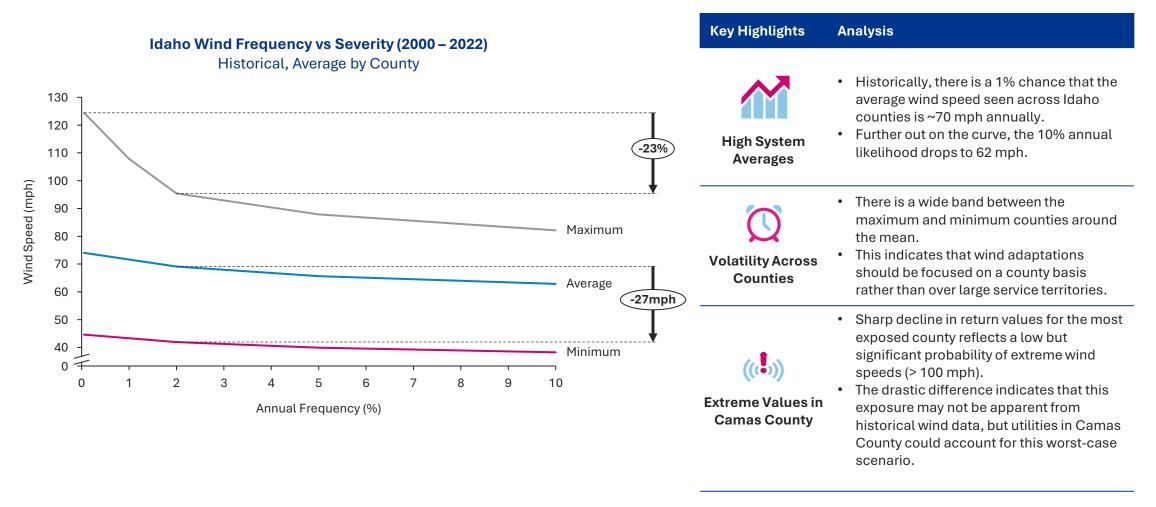


IGOEMR could consider reinforcing Tx structures for MV/HV lines and explore rating of panels at solar facilities in the SW region of the state

Idaho 100-year Wind Speed (mph)

Historical

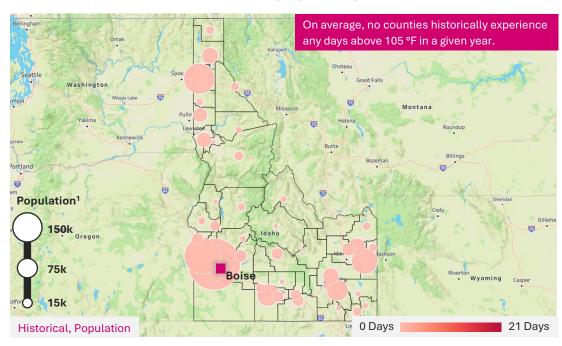
Key Highlights Analysis Multiple MV-HV transmission pass through Gem and Ada Counties, where they are exposed to high wind return values. IGOEMR could consider reinforcing Tx **Transmission** structures to complement existing undergrounding and vegetation management projects to address exposure. • Brownlee Dam is exposed to relatively high peak wind gust speeds. · Extreme wind events can cause debris to accumulate in the water and clog intake, and **Hydroelectric** poses a threat to operational staff, both resulting in plant derating.


Solar

- A handful of solar farms in southern counties are exposed to relatively high extreme wind gust levels.
- Depending on OEM, solar panels are only rated to 90 mph, indicating the potential need for rack reinforcement and vegetation management.

22 | Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

Historically, there is a 1% chance that the average wind speed seen across Idaho counties is ~70 mph annually.

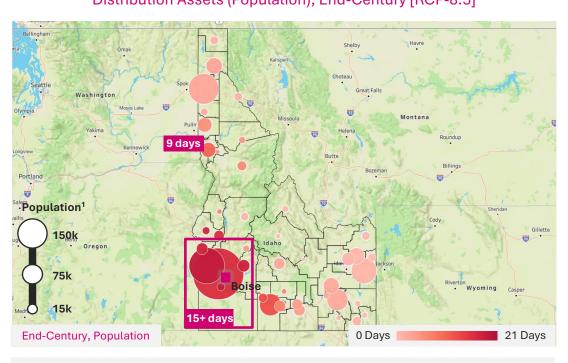


Heat

Asset Analysis

Significant increases in extreme heat exposure across the state suggest that IGOEMR could prioritize substation and Dx line upgrades to address derating, degradation, and risk of failure

Idaho Days Above 105 °F Distribution Assets (Population), Historical


KEY OBSERVATIONS

- Currently, T_v and D_v assets have no exposure to days above 105 °F.
- 105 °F is a particularly important threshold for distribution assets and substations, which can fail when exposed to two consecutive days above 104 °F.2

Source: ClimRR, US Census Bureau, City and Town Population Totals

25 | Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

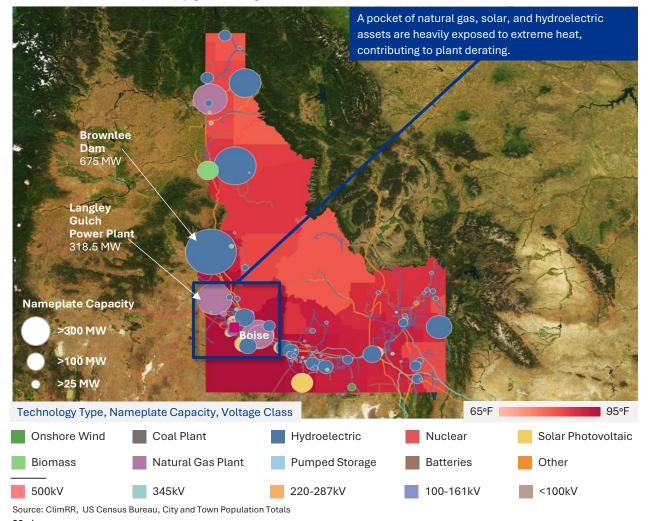
Idaho Days Above 105 °F Distribution Assets (Population), End-Century [RCP-8.5]

KEY OBSERVATIONS

Counties in the SW are expected to face about 15+ days >105 °F annually, causing high asset utilization, derating, and potential failure. **Undergrounding/veg management** proposals address some exposure.

Canvon County

Populous county facing 18 days of extreme heat exposure by end-century, potentially justifying substation and Dx line upgrades to mitigate potential failure and derating.

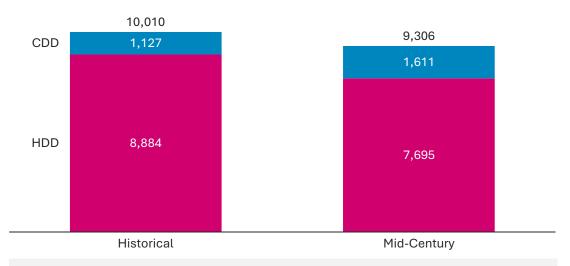


¹Population bubbles are continuous and therefore labels are approximate. ²EPRI Climate READi

IGOEMR could prioritize DER development and cost-effective line adaptations to combat generator/Tx derating and line sag resulting from extreme heat exposure in SW counties

Idaho Summer Average Maximum Temperature (°F)

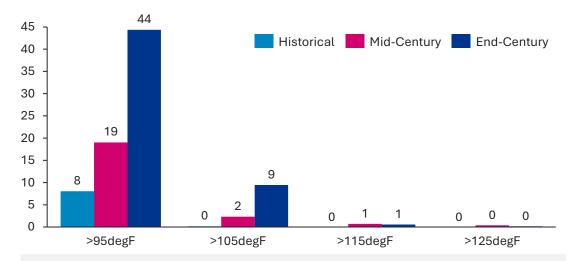
Generators, Mid-Century [RCP-8.5]


Key Highlights Analysis Thermoelectric generators that rely on waterbased cooling methods will experience **production derates** as extreme heat raises **Thermoelectric** average water temperatures. Brownlee Dam and other hydro assets in the SW are susceptible to extreme heat, which increases the likelihood of algal blooms that reduce output. • Solar assets in SW counties are significantly Renewables exposed to extreme heat, contributing to production derating at temperatures above 77°F. A significant portion of 220kV+ transmission lines are exposed to high levels of extreme heat in the SW, which can cause capacity derates and line sag. · Undergrounding and veg management **Transmission** proposals address these issues, but IGOEMR could consider other adaptations to fortify

longer portions of transmission lines.

26 | Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

Extreme heat days will become more common in Idaho, contributing to derating, capacity violations, and substation failure, indicating the need for state-wide substation upgrades

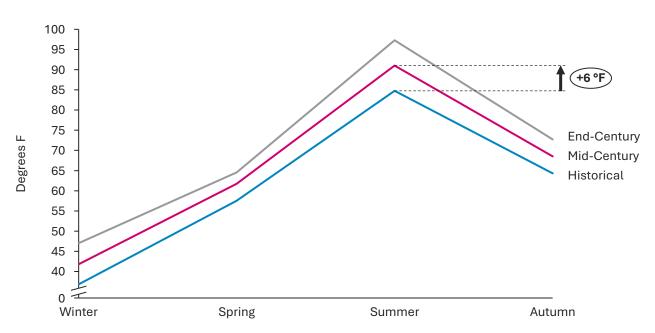

Idaho Average Annual Cooling & Heating Degree Days (CDD & HDD) Population-Weighted by County [RCP-8.5]

KEY OBSERVATIONS

- Between historical and mid-century, the ratio of CDD to HDD
 increases, with the share of average number of CDD jumping from about
 12% to 20%.
- This results in increased summer asset utilization and degradation, but impacts to winter utilization remain unclear depending on heating electrification trends.
- Larger gap between HDD values than CDD values indicates that heating load will be more significantly impacted than cooling load.

Idaho Average Annual Days Exceeding Daily Max Heat Index Thresholds Population-Weighted by County [RCP-8.5]

KEY OBSERVATIONS


- Over 2x increase in days with heat index >95°F by mid-century demonstrates an increase in peak load and will likely contribute to derating and capacity violations for transmission and thermal generating units.
- Significant increase in days > 105°F by end-century poses a substantial risk to distribution transformers, which can fail after two consecutive days above 104 °F without sufficient cooling infrastructure, indicating a crucial focus area for IGOEMR in future funding allocation processes.

Average summer temperature maximums are projected to increase by mid-century, increasing the duration and magnitude of high system utilization

Idaho Average Seasonal Maximum Temperature (°F)

Population-Weighted by County [RCP-8.5]

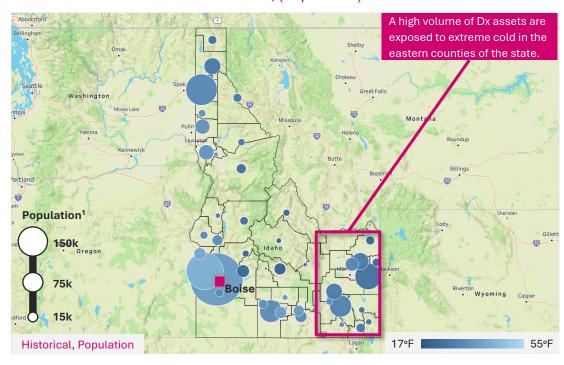
Key Highlights

Analysis

Heat risk increases most drastically in summer, with a 6 °F increase in the average seasonal max by mid-century, increasing system utilization and degradation.

Shorter Shoulder Seasons

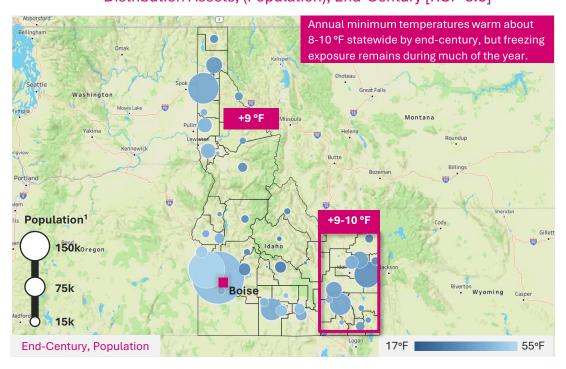
• Warming is generally less pronounced in shoulder seasons, although increased autumn maximums could extend the duration of high system utilization and shorten maintenance windows.


Cold

Asset Analysis

IGOEMR could evaluate whether current undergrounding projects align with geographic cold exposure and consider Dx pole upgrades to address continued freezing risk

Idaho Average Annual Minimum Temperature (°F)


Distribution Assets, (Population) Historical

KEY OBSERVATIONS

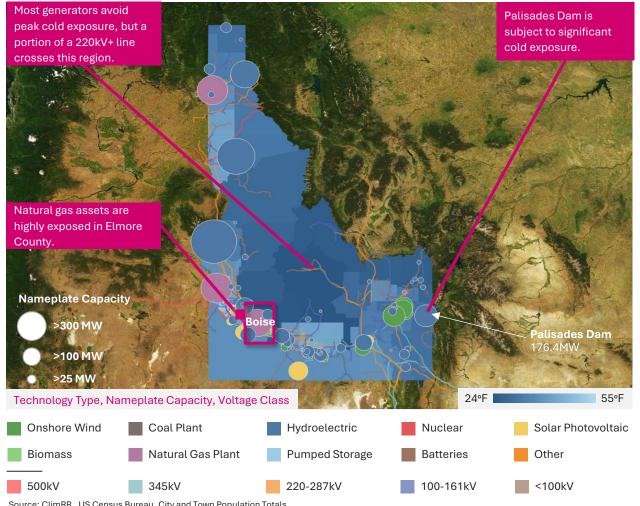
- Extreme cold is concentrated in the eastern and northern regions of ID.
- Annual minimums are below 32 °F across much of the state, indicating widespread historical freezing exposure.
- Prevalence of proposals including undergrounding addresses extreme cold exposure, but IGOEMR could also consider Dx pole upgrade projects.

Idaho Average Annual Minimum Temperature (°F)
Distribution Assets, (Population), End-Century [RCP-8.5]

KEY OBSERVATIONS

• Climate projections cannot predict acute extreme events like polar vortices and winter storms, **underrepresenting cold exposure**.

Bonneville County

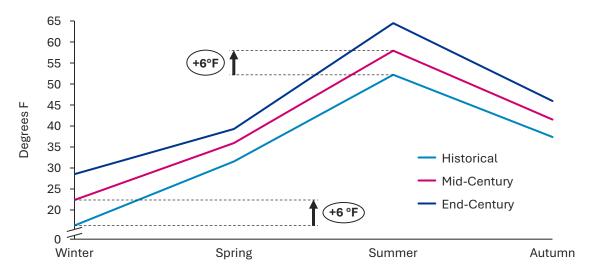

By end-century, Bonneville County will be exposed to annual minimums of about 36 °F, indicting potential icing exposure for Dx assets during most of the year.

IGOEMR could consider resilience upgrades to gas plants and pipeline systems to combat cold exposure, and Tx hardening addressing freezing, such as structure reinforcement

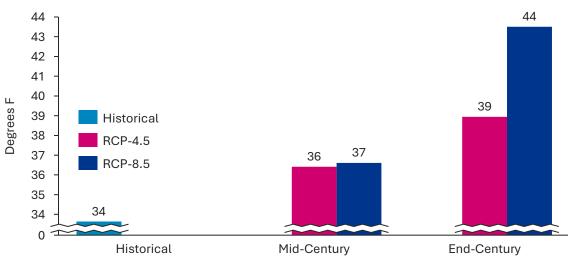
Idaho Average Annual Minimum Temperature (°F)

Generators, Mid-Century [RCP-8.5]

Key Highlights Analysis Frazil ice formation and maloperation of spill gate motors can result in plant faults Hvdroelectric or production derates. Natural gas plants in Elmore County are exposed to average annual minimums of 25°F, which could cause ignition failure or performance issues. **Natural Gas** No proposals addressing aging gas infrastructure, which requires hardening or replacement to mitigate cold exposure. • Wind plants in Bonneville and Elmore counties face cold exposure that contributes to asset failure and ice throw. Wind • Despite warming, the prevalence of nearfreezing annual minimums in many counties contributes to Tx freezing/icing risk that can cause asset failure. Freezing/Icing The portion of a 220+kV line owned by BPA that runs through Custer County is particularly exposed.


Source: ClimRR, US Census Bureau, City and Town Population Totals

^{31 |} Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information


Despite warming over time, winter temperature minimums remain below 32 °F, indicating that IGOEMR could consider pole and cable upgrade projects to address freezing exposure

Idaho Average Seasonal Minimum Temperature (°F)

Population-Weighted by County [RCP-8.5]

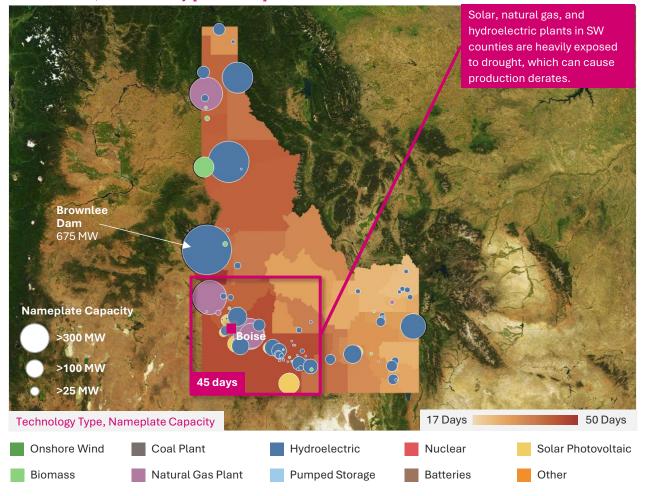
Idaho Average Annual Minimum Temperature (°F) Population-Weighted by County [RCP-4.5, RCP-8.5]

KEY OBSERVATIONS

- Significant winter warming (+6 °F by mid-century) will decrease overall heating load, but the impact on electricity demand ultimately depends on the speed of heating electrification.
- Mid-century and end-century winter minimums remain below 32 °F, indicating that freezing and icing exposure persists despite warming.
- IGOEMR's undergrounding projects address cold exposure, but pole and cable upgrades could be considered to combat freezing.

KEY OBSERVATIONS

- ~8% increase in average annual temperature minimums by mid-century (RCP-8.5) indicates a reduction in heating load.
- Diverging temperature projections by end-century demonstrates projection uncertainty and the importance of continued monitoring.
- Regarding extreme cold, global climate models do not resolve for extreme cold events like polar vortices, so assets could still face similar levels of exposure to cold-related failures.

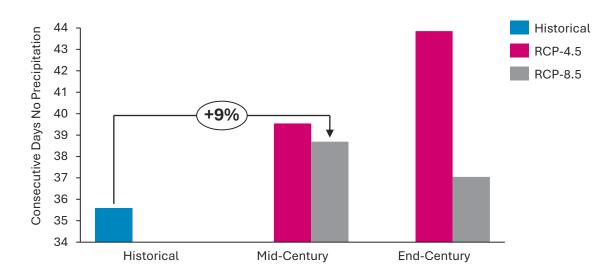

Drought

Asset Analysis

Facing significant drought exposure, IGOEMR could consider climate-adjusted hydroelectric production forecasting and innovative cleaning and cooling solutions for solar and natural gas

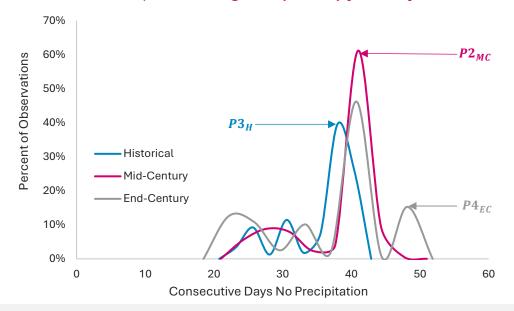
Idaho Consecutive Days No Precipitation

Generators, Mid-Century [RCP5-8.5]



Key Highlights	Analysis
	Brownlee Dam is exposed to peak state- wide drought exposure, which could significantly impact output.
Hydroelectric	 Asset owners and grid operators could be forecasting long-term production from these hydro facilities with climate- adjusted inputs, as drought exposure exhibits increases and decreases of up to 40% across different counties.
	 In arid conditions, air intakes for CCGTs and CTs can clog and degrade due to dust and sand particles, decreasing efficiency and longevity of generator.
Natural Gas	 Lack of water availability can reduce natural gas cooling ability, resulting in power production curtailments.
	Drought conditions cause dust buildup on solar panels, hurting capacity factors.
Solar	 In areas that also have high wildfire exposure, panel cleaning projects address two hazards simultaneously.

Under RCP-8.5, drought exposure peaks by mid-century, but a pocket of more severe exposure emerges by end-century, marking a potential area for future investment


Idaho Average Annual Consecutive Days with No Precipitation Population-Weighted by County [RCP 4.5, RCP-8.5]

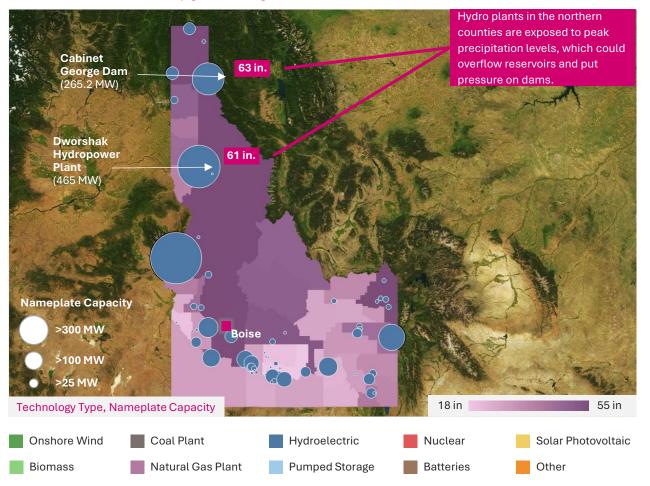
KEY OBSERVATIONS

- Drought exposure increases by ~17% by mid-century (under RCP 8.5), contributing to potential asset cooling failures and reduced hydroelectric generation.
- Higher drought exposure for mid-century than end-century demonstrates that drought risk does not scale linearly with temperature and could be monitored closely over time, especially by hydroelectric asset owners.

Idaho Average Consecutive Days w/ No Precipitation Statistical Distribution Population-Weighted by County [RCP-8.5]

KEY OBSERVATIONS

- By mid-century, P2 increases and shifts right relative to historical P3, indicating drought exposure will increase in spatial extent and severity.
- P4 shifts right to 50 days by end-century, indicating that **drought** exposure will reach new levels of severity across 15% of the state.
- Bimodal distribution for mid-century shifting to a multi-modal shape by end-century indicates **converging exposure followed by divergence.**


Precipitation

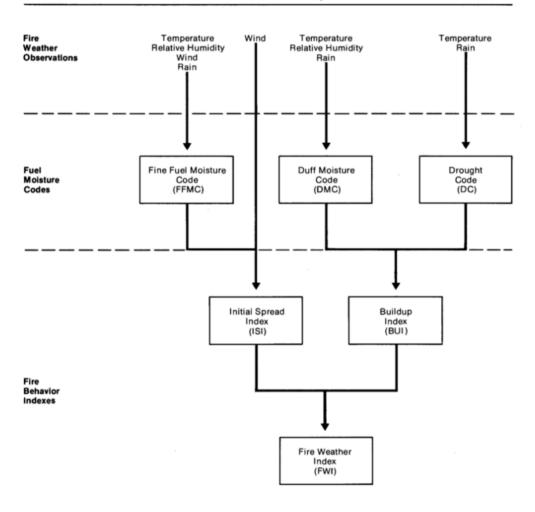
Asset Analysis

Precipitation levels increase slightly by mid-century, but IGOEMR could consider the impacts of precipitation timing, upstream conditions, and changing snow patterns on hydro output

Idaho Annual Max Precipitation (in)

Generators, Mid-Century [RCP5-8.5]

Key Highlights	Analysis
	Timing of precipitation has an important impact of hydro output.
	 Extreme rainfall events may overflow reservoirs and put more pressure on dams, increasing risk of failure.
Timing	 Projections of both increased drought and annual precipitation indicate that extreme precipitation events may become more likely over time.
z	 Upstream precipitation and drought will have significant impacts on hydro production.
Upstream Coordination	 IGOEMR could establish a relationship with ODOE and WSDOC to share information about precipitation conditions and hydro output on shared waterways.
	While precipitation levels increase by mid- century, precipitation type and timing is likely to change and could be monitored.
Changes to Snow Patterns	 Grid operators could consider the impacts of less snow and earlier snow melt when conducting long-term planning.


Source: ClimRR, US Census Bureau, City and Town Population Totals

37 | Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

Appendix

Fire Weather Index synthesizes weather and moisture content data into a normalized value representing the danger of fire spread once ignition has occurred.

Structure of the Canadian Forest Fire Weather Index System

KEY TAKEAWAYS

- FWI is a useful metric for evaluating weather-based conditions that heighten the danger of wildfire spread once ignition has occurred.
- Initial Spread Index: Measures the expected rate of fire spread, based on wind speed and moisture content of fine fuels/forest litter (Fine Fuel Moisture Code).
- Buildup Index: Measures the total amount of forest fuel available for consumption, based on the moisture content of intermediate organic layers, such as decomposing plant matter (Duff Moisture Code), and the moisture content of deep organic layers and soils, which corresponds to drought measures (Drought Code).
- Daily FWI values were calculated using readings from Argonne's downscaled 12km climate data and averaged annually or seasonally across RCP-4.5 and RCP-8.5.
- Percentiles (below) were calculated based on FWI values across all
 12km grid cells in the contiguous U.S.

FWI Class	Percentile range in historical period	FWI values in Class
Low	0–25 th percentile	0–9 FWI
Medium	25–50 th percentile	9–21 FWI
High	50–75 th percentile	21–34 FWI
Very High	75–90 th percentile	34–39 FWI
Extreme	90–98 th percentile	39–53 FWI
Very Extreme	Above 98th percentile	Above 53 FWI

