GRID RESILIENCE REPORT | DISCLAIMER

Disclaimer

This document: (a) is proprietary and confidential to Baringa Services Ltd ("Baringa") and could not be disclosed to or relied upon by any third parties or re-used without Baringa's consent; (b) shall not form part of any contract nor constitute acceptance or an offer capable of acceptance; (c) excludes all conditions and warranties whether express or implied by statute, law or otherwise; (d) places no responsibility or liability on Baringa or its group companies for any inaccuracy, incompleteness or error herein; and (e) is provided in a draft condition "as is" without warranty. Any reliance upon the content shall be at user's own risk and responsibility. If any of these terms is invalid or unenforceable, the continuation in full force and effect of the remainder will not be prejudiced.

Copyright © Baringa Services Limited 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information. No part of this document may be reproduced without the prior written permission of Baringa Services Limited.

This report has been prepared by Baringa Services Ltd or a Baringa group company ("Baringa") specifically for the client named in this report ("Client") for the sole purpose of assisting the consideration of Client or interested investors ("Investors") in the potential transaction named in this report ("Transaction").

This report does not constitute a personal recommendation of Baringa or take into account the particular investment objectives, financial situations, or needs of Client or the Investors in relation to the Transaction. Client and Investors could consider whether the content of this report is suitable for their particular circumstances and, if appropriate, seek their own professional advice and carry out any further necessary investigations before deciding whether or not to proceed with the Transaction. This report could not, under any circumstances, be treated as a document containing complete and accurate information sufficient to make an investment decision. It is the responsibility of the Client and Investors to conduct such due diligence as necessary of any risk factors not identified in this report or which could affect the operation, financial standing and further development prospects of any assets being acquired, charged or sold in the Transaction. Baringa shall not be liable in any way for errors or omissions in information contained in this report based upon publicly available industry data or specific information provided by others (including Client, its affiliates, their advisers, target entity or any third parties). Baringa makes no representations or warranties (express or implied) concerning the accuracy or completeness of the information contained in this report, nor whether such information fully reflects the actual situation described in this report, and all conditions and warranties whether express or implied by statute, law or otherwise are excluded.

Information and data contained in this report is confidential and must not be disclosed to third parties by Client or Investors except as permitted in the relevant Client contract with Baringa or with the written consent of Baringa. This report may not be used in any processes involving the public offering in which shares of stock in a company are sold either privately or on a securities exchange. No part of this Report may be copied, photocopied or duplicated in any form by any means or redistributed (in whole or in part) except as permitted in the relevant Client contract with Baringa or with the written consent of Baringa. Copyright © Baringa Services Ltd 2024. All rights reserved.

Grid Resilience Reports

Arizona

Energy & Resources | Networks 12/11/2024

Copyright © Baringa Partners LLP 2025. All rights reserved.

Table of contents

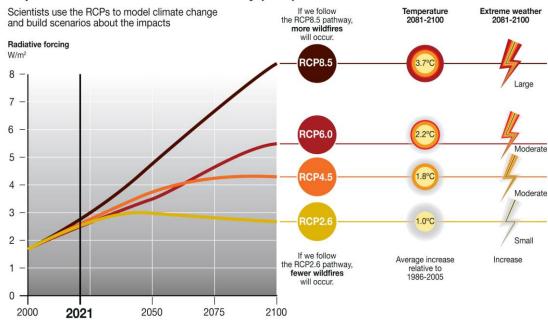
Project Context	
 Project Context & Approach 	4-6
Deliverable Overview	
Climate Science Background	8
Data Sources	9-11
Analysis Approach	12
Grid Resilience Report	
Assets Class Overview	14-15
• Wildfire	16-19
• Flood	20-22
• Wind	23-26
• Heat	27-31
• Cold	32-35
• Drought	36-38
Precipitation	39-40

Grid Resilience Reports

Climate Science Background, Data Sources, and Analysis Approach

RCPs and SSPs provide viable climate pathways for an uncertain future

ipcc


Generating Emission Scenarios

- Representative concentration pathways (RCPs) project GHG concentrations: Defined by the IPCC in 2014 as scenarios of future emission concentrations and other radiative forcing that align to climate projections. 1 RCPs use assumptions relating to policy decisions and individual behavior that may change future GHG emissions concentrations. 1 SSPs have largely replaced RCPs.
- Shared socioeconomic pathways (SSPs) provide 5 'storylines' to contextualize RCPs and to provide the various future pathways possible.² They consider how the world could evolve socioeconomically and politically, including how various levels of climate change mitigation and adaptation could be achieved and will influence future climate scenarios.3
- RCPs included in the CLIMRR dataset include RCP 4.5 and RCP 8.5.
- SSPs included in the Hydrosource dataset include SSP585, SSP370, SSP245, and SSP126.

Modeling Scenario: RCP 4.5

- "Moderate" scenario: Emissions peak around 2040 and then slowly begin to decline.⁴ Temperatures warm about 3.2 °F from a 2000 baseline.⁵
- CO2 emissions plateau before falling mid-century, as energy use sharply declines and there is large scale reforestation. 6

Representative Concentration Pathway (RCP)

GRID-Arendal/Studio Atlantis, 2021

Modeling Scenario: RCP 8.5

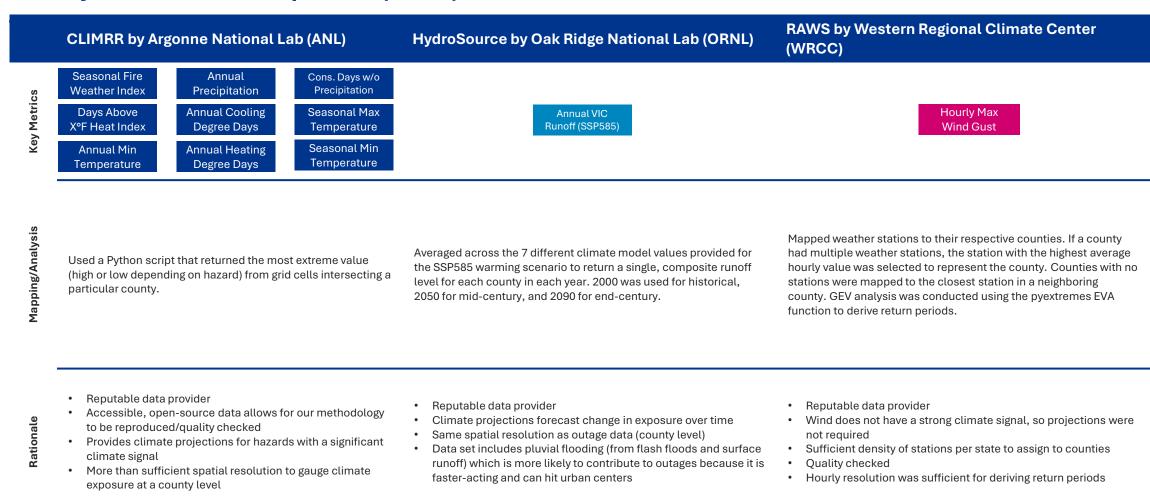
- "Rapid growth" scenario: Emissions continue to rise throughout the twenty-first century.4 Temperatures warm about 6.6 °F from a 2000 baseline. 5
- CO2 emissions are three times higher than the present by end-century, with a large increase in methane emissions and continued fossil fuel use. 6

¹ Source: ComEd Vulnerability Study 2023 ⁴ Source: Help (cal-adapt.org)

² Source: Jupiter

³ Source: Carbon Brief

⁵ CoastAdapt


⁶ Climate Copernicus

Baringa leverages national downscaled climate datasets with high granularity to assign county-level climate exposure

	CLIMRR by Argonne National Lab (ANL)	HydroSource by Oak Ridge National Lab (ORNL)	RAWS by Western Regional Climate Center (WRCC)	
Dataset Description	The Climate Risk and Resilience Portal (CLIMRR) provides highly localized climate projections from mid- to end-century using a supercomputer to model 60 climate variables.	HydroSource is a comprehensive national water energy digital platform consisting of hydropower-related data set, models, visualizations, and analytics tools.	The Wildland Fire Remote Automated Weather Stations (RAWS) data set provided by WRCC is a quality-controlled repository of hourly data for 17 select weather metrics from a network of weather stations across western states.	
Data Provider Description	Argonne National Lab is a federally-funded science and engineering research center sponsored by the Department of Energy.	Oak Ridge National Lab is a federally funded research and development center sponsored by the Department of Energy.	The Western Regional Climate Center is one of 6 Regional Climate Centers in the United States. WRCC works jointly with NOAA to coordinate climate activities and conduct applied research on climate issues in the West.	
Years Covered	Historical, Mid-Century, End-Century	1980-2099	2000-2022	
Spatial Resolution	12 km (aggregated to county)	County	Weather station (aggregated to county)	
Hazards	RAIN FIRE HEAT COLD DROUGHT	FLOOD	WIND	

Baringa leverages national downscaled climate datasets with high granularity to assign county-level climate exposure (cont.)

Baringa is leveraging forward-looking climate projections to inform its technical assistance work for states in WECC

Wind

Source: Western Regional Climate Center (WRCC)

Input metric: Hourly max wind

speed (mph)

Output: Wind speed at key return

periods via GEV distribution

Wildfire

• Source: CLIMRR (ANL)

Input metric: Fire weather index

(FWI) by grid cell

Output: Maximum fire weather

index by county

Precipitation

Source: CLIMRR (ANL)

Input metric: Annual total precipitation (in/year) by grid cell

Output: Max annual total

precipitation (in/year) by county

Drought

Source: CLIMRR (ANL)

Input metric: Consecutive days with no precipitation by grid cell **Output:** Max consecutive days with no precipitation by county

Heat

Source: CLIMRR (ANL)

Input metrics:

- Days above 95, 105, 115, 125 °F
- Annual cooling degree days
- Seasonal maximum temperatures

Output: Input metrics applied from a grid cell level to a county level

Cold

Source: CLIMRR (ANL)

Input metrics:

- · Annual minimum temperature
- · Annual heating degree days
- Seasonal minimum temperatures

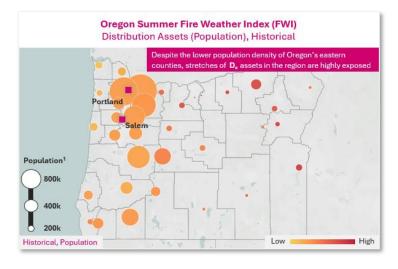
Output: Input metrics applied from a grid cell level to a county level

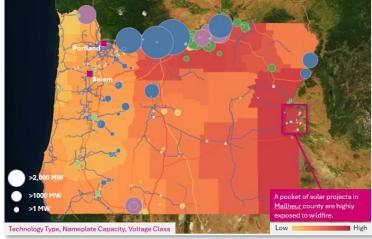
Flood

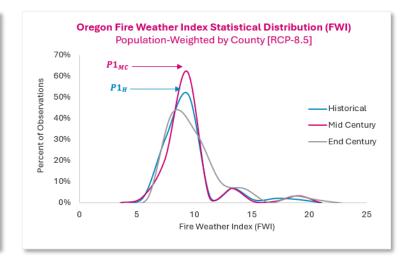
Source: Hydrosource (ORNL)

Input metric: Annual Variable Infiltration Capacity (VIC) model

runoff (mm/year)


Output: Average annual VIC runoff (pluvial flooding) for 4 warming scenarios and 3 time periods (historical, mid-century, end-century)


This report is standardized to include 3 different data visualizations that provide insights for Distribution, Transmission, and Generation across 7 extreme weather hazards


Distribution Maps

Transmission & Generation Maps

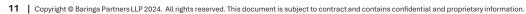
Statistical
Distribution Graphs

- Purpose: Uses population as proxy for volume of distribution assets given that the location of distribution assets is restricted.
- Interpretation*: Locate areas of high exposure by identifying counties with coincident large bubbles and dark colors. This indicates a combination of high volume of Dx assets and significantly high extreme weather projections.
- **Purpose:** Overlays transmission and generation assets on climate projections by county.
- Interpretation: Locate areas of high exposure by identifying assets in counties of high risk. Exposure differs by asset class and will be highlighted in Key Insights tables throughout.
- Purpose: Contains statistical insights related to each metric. Indicates change in dispersion and severity of risk over time on average
- Interpretation: An increase in the width of the peak indicates a decrease in concentration of exposure, meaning more counties are exposed to more severe weather. A shift right in the curve indicates that on average, counties are experiencing more severe weather.

^{*}Note: Analysis addresses risk given volume of assets and does not account for risk to remote customers at end of radial distribution grids.

Asset Class Overviews

Executive Summaries


AZ could consider increasing resilience spend to address escalating fire exposure in S/SW counties, and weatherize assets in NE counties given continued freezing/cold risk

Key Takeaways

- Confirm T&D assets in W counties are low risk due to limited vegetation. Focus wildfire mitigation investment in N. and NE. counties as well.
- Consider methods to address supply derating (VPPs) and Dx system capacity upgrades to avoid direct failure from heat in S/SW counties.
- Focus generation weatherization. Dx pole upgrades, and Tx structure reinforcement on assets in NE counties facing continued freezing/snow exposure.

		1 0003	generation weatherization, by pote apgrades, t	and 1x structure reminification on assets in NE count	ilos lacilig	continued receing/snow exposur
Hazard	Exposure	Change to Mid- Century	Generation	Transmission & Distribution (Tx & Dx)	AWPI*	Projects to Address Exposure
FIRE	Н	•	Consider investment in emergency response planning and innovative solar O&M processes • Enhanced monitoring coupled with emergency response planning could reduce restoration times. • Innovative solar cleaning projects or optimized maintenance scheduling could help combat derating during fires.	 Focus hardening efforts on Dx assets and HV import/export lines in N. and NE. counties HV tie lines to UT/NM, which are critical during extreme weather events, are exposed to wildfire risk due to high vegetation density. Consider counties that border population centers where there are high volume of assets, but limited undergrounding given suburban/rural building. 		Gen: Harden control houses, upgrade access roads, update emergency planning. T&D: Dx pole upgrades, undergrounding, pole wrapping, vegetation management, and enhanced monitoring.
HEAT	Н		Explore flexible DER to offset derating of supply DER/VPP proliferation minimizes reliance on a pocket of natural gas, solar, and nuclear plants that will be heavily exposed to extreme heat.	 Consider substation/transformer upgrades and more cost-effective Tx hardening methods Significant exposure to days >105°F requires substation and transformer upgrades to avoid direct failure. Widespread heat exposure necessitates upgrades that harden the entire length of a high voltage transmission line, particularly in Maricopa County. 		Gen: Enhanced cooling, demand response, DERs/VPPs. T&D: Reconductoring, vegetation management, undergrounding, linupgrades, dynamic line rating (DLF)
COLD	М	•	Focus weatherization technologies on generation assets in NE counties • Hydroelectric and wind generators face continued cold exposure in Coconino and Navajo Counties.	Consider Dx pole upgrades and Tx structure reinforcement in NE counties Despite warming, assets in NE counites continue to face low minimum temperatures and potentially icing risk.		Gen: Generator heating, enclosures, enhanced design standards. T&D: Dx pole upgrades, Tx structur reinforcement, vegetation management, undergrounding.

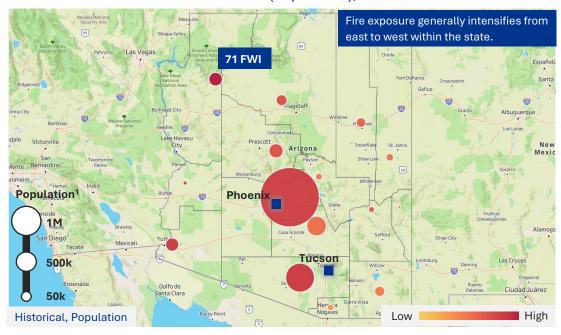
^{*} AWPI = Alignment with proposed investment (40101(d) Round 1 project proposals)

AZ could consider substation fortifications in central counties, Tx and Dx reinforcement in north-central counties, and enhanced data collection to better forecast hydro output

- Consider reinforcing Tx and Dx infrastructure in northern and Maricopa counties to address high levels of wind exposure, especially at high elevations.
- AZ could prioritize substation and Dx pole fortification in Yavapai and Greenlee Counties to address potential pluvial flood exposure.
- Improve data collection regarding drought and precipitation to more accurately forecast hydroelectric production from dams along the Colorado River.

Hazard	Exposure	Change to Mid- Century	Generation	Transmission & Distribution (Tx & Dx)	AWPI*	Projects to Address Exposure
≈ FLOOD	L	>	 Most supply technologies are not significantly exposed to flood A handful of solar plants in Yavapai County are significantly exposed to flooding, which can inundate inverters and other ground-level equipment. 	 Though low level of pluvial flooding exposure, AZ could conduct further analysis and research to identify specific low-lying substations at risk. HV substations could be exposed to flooding in Yavapai, Gila, and Greenlee Counties, which can cause direct failure. 		Gen: Elevate ground-based equipment, flood walls, equipment enclosure, enhanced drainage. T&D: Substation elevation, flood walls, substation enclosure, Dx pole reinforcement/replacement.
WIND	М	>	AZ could consider investments to buttress solar racking and anticipate turbine cutouts Solar plants in Yavapai and Mohave Counties are exposed to 100-year return values exceeding some solar panel wind ratings.	Tx and Dx infrastructure in Maricopa and northern counties could be prioritized for reinforcement Critical HV juncture in Maricopa County could be considered for Tx structure reinforcement. High-elevation N counties face high winds.		Gen: Enhanced equipment design standards, solar racking reinforcement. T&D: Tx structure reinforcement, undergrounding, decreased spans.
DROUGH	Н	1	Grid operators could consider using climate- adjusted inputs for hydro output forecasting Drought exposure the Hoover and Davis Dams increases 12% by mid-century. Drought also derates solar and natural gas.	Drought exposure does not have a material impact on transmission and distribution assets.		Gen: Enhanced/closed-loop cooling systems, climate-adjusted supply forecasting, solar O&M innovation (panel cleaning).
RAIN	L	>	AZ could seek out additional data to better understand future hydroelectric production • Consider the impact of more frequent extreme rain events on hydro output and asset operation.	Precipitation exposure does not have a material impact on transmission and distribution assets.		Gen: Climate-adjusted supply forecasting, dam reinforcements, reservoir enlargement.

^{*} AWPI = Alignment with proposed investment (40101(d) Round 1 project proposals)

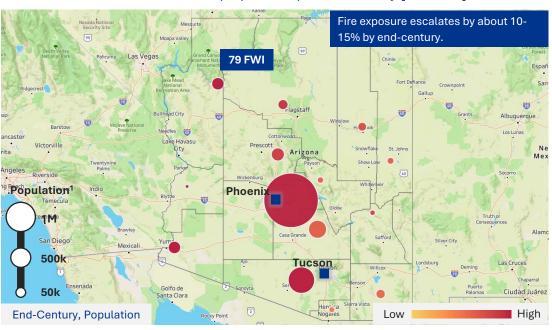


Wildfire

Asset Analysis

AZ could consider prioritizing counties that are adjacent to population centers where there is a large volume of Dx assets, high wildfire exposure, and limited undergrounding

Arizona Summer Fire Weather Index (FWI) Distribution Assets (Population), Historical



KEY OBSERVATIONS

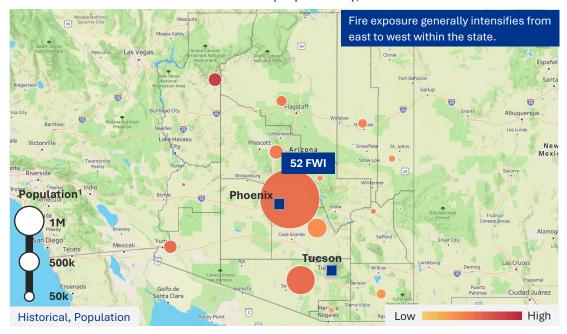
- Historical wildfire exposure is concentrated in Arizona's SW counties, although FWI levels are generally high throughout the state.
- Population centers in the central region of the state are heavily exposed, posing a threat to a high density of Dx assets.
- Rural W counties are highly exposed and are more likely to be served by radial Dx lines that can cause prolonged outages if damaged by fire.

Arizona Summer Fire Weather Index (FWI)

Distribution Assets (Population), End-Century [RCP-8.5]

KEY OBSERVATIONS

 FWI increases by up to 8 points across the state, demonstrating the importance of utilizing forward-looking climate projections for statewide fire mitigation planning.


Mohave County faces peak state-wide fire exposure (>98th percentile nationally) and has a large spatial extent, putting many radial last-mile Dx lines at risk.

^{14 |} Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

AZ could consider prioritizing counties that are adjacent to population centers where there is a large volume of Dx assets, high wildfire exposure, and limited undergrounding

Arizona Summer Fire Weather Index (FWI) Distribution Assets (Population), Historical

KEY OBSERVATIONS

- Historical wildfire exposure is concentrated in Arizona's SW counties, although FWI levels are generally high throughout the state.
- Population centers in the central region of the state are heavily exposed, posing a threat to a high density of Dx assets.
- Rural W counties are highly exposed and are more likely to be served by radial Dx lines that can cause prolonged outages if damaged by fire.

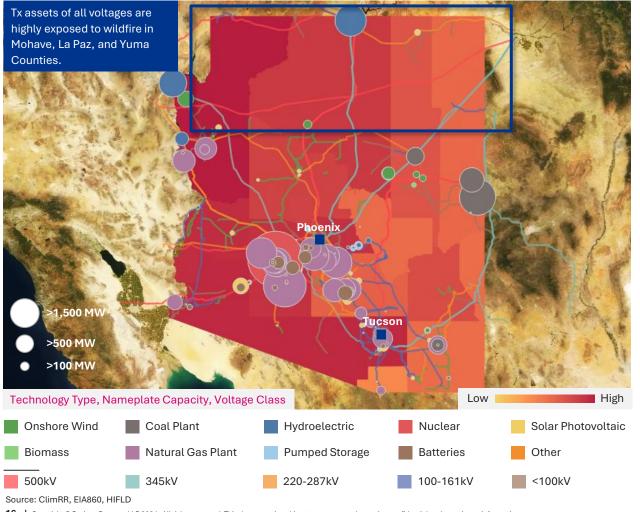
Arizona Summer Fire Weather Index (FWI)

Distribution Assets (Population), Mid-Century [RCP-8.5]

KEY OBSERVATIONS

 FWI increases by up to 4-5 points across the state by mid-century, demonstrating the need for near-term grid upgrades to mitigate fire exposure.

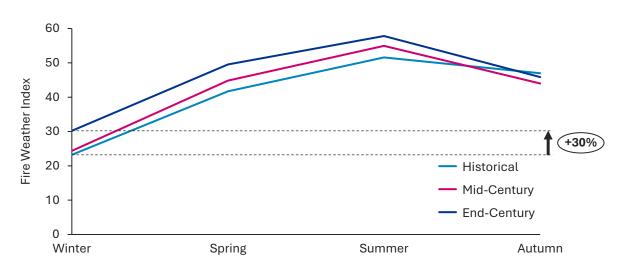
Coconino County faces the most severe increase in fire exposure by mid-century across the state (48 \rightarrow 54 FWI), justifying near-term grid hardening investment in the region.

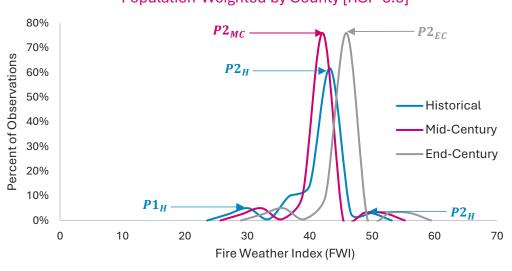

^{15 |} Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

AZ could consider prioritizing hardening for highly exposed remote Tx assets in highly vegetated areas in the N. and NW. counties, especially those utilized for electricity import

Arizona Summer Fire Weather Index (FWI)

Generators & Transmission, Mid-Century [RCP-8.5]


Key Highlights	Analysis
Transmission	 Remote transmission assets are critical for last mile rural customers and are highly exposed in western counties. Although, western 500 kV Tx lines connecting AZ to CA/NV are highly exposed, limited vegetation in this region reduces risk materiality. AZ could focus hardening investment in Tx hardening on HV lines in the N & NE given imports from NM and UT.
Solar	 Solar assets in Yuma and Pima Counties are highly exposed to wildfire. Soot and ash from burns decreases capacity factors solar assets by collecting on panels and reducing irradiance. Very few proposed projects address generator exposure, indicating a potentially overlooked resilience topic area for the state.
Restoration	 Wildfire causes ingress/egress issues through destruction of roads and transportation, slowing restoration times for all assets. AZ could consider funding projects addressing wildfire-related access issues given its impact across all asset classes.


Fire exposure increases slightly by mid-century during the spring and summer, but intensifies more significantly by end-century from winter-summer in all regions of the state

Arizona Average Seasonal Fire Weather Index (FWI)

Population-Weighted by County [RCP-8.5]

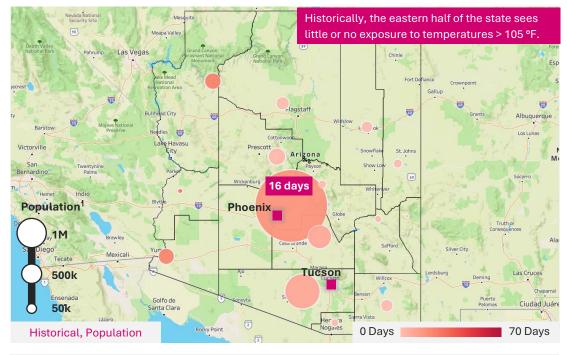
Arizona Fire Weather Index Statistical Distribution (FWI) Population-Weighted by County [RCP-8.5]

KEY OBSERVATIONS

- End-century wildfire exposure is elevated, with the sharpest increase occurring in the winter by about 30% from historical FWI.
- Elevated wildfire exposure from winter through summer indicates a lengthening of the wildfire season, starting earlier in the calendar year.
- The change in length of wildfire season suggests that the window for scheduled maintenance during the shoulder seasons is diminishing, especially in the winter and spring.

KEY OBSERVATIONS

- Increase in peak 2 (P2) by mid-century indicates that an increasing percentage of the population will be exposed to a FWI level of about 40.
- Rightward shift of the curve by end-century represents an increasing severity in fire exposure across all 3 climate zones within the state.
- P2 largely represents Maricopa County's fire exposure given its large population, with the other two peaks representing the northern (P1) and southern counties (P3) in the state.

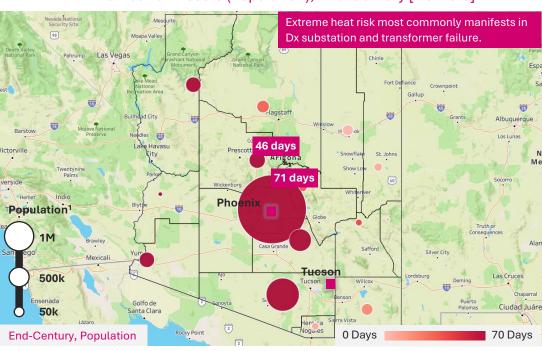


Heat

Asset Analysis

AZ could consider Dx substation and transformer upgrades to combat increasing heat exposure, especially in W counties that are not historically exposed to extreme temperatures

Arizona Days Above 105 °F
Distribution Assets (Population), Historical


KEY OBSERVATIONS

- Historically, exposure to days > 105 °F is limited to western and southern counties in the state.
- 105 °F is a particularly important threshold for distribution assets and substations, which can fail when exposed to two consecutive days above 104 °F.²

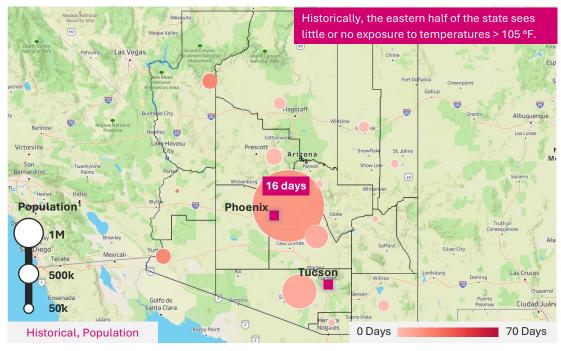
Source: ClimRR, US Census Bureau, City and Town Population Totals

19 | Copyright © Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

Arizona Days Above 105 °F
Distribution Assets (Population), End-Century [RCP-8.5]

KEY OBSERVATIONS

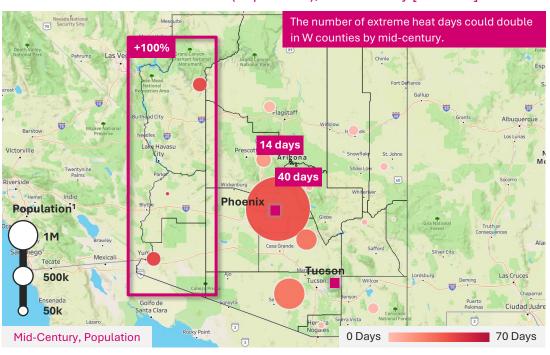
 By end-century, nearly every county is exposed to a significant number of days > 105 °F annually, causing high asset utilization, derating, and potential failure.


Escalation from 2 days to 46 days of extreme heat exposure necessitates substation, transformer, and Dx line upgrades to mitigate potential failure and avoid derating.

¹Population bubbles are continuous and therefore labels are approximate. ²EPRI Climate READi

AZ could consider Dx substation and transformer upgrades to combat increasing heat exposure, especially in W counties that will experience substantial near-term warming

Arizona Days Above 105 °F
Distribution Assets (Population), Historical


KEY OBSERVATIONS

- Historically, exposure to days > 105 °F is limited to western and southern counties in the state.
- 105 °F is a particularly important threshold for distribution assets and substations, which can fail when exposed to two consecutive days above 104 °F.²

Source: ClimRR, US Census Bureau, City and Town Population Totals

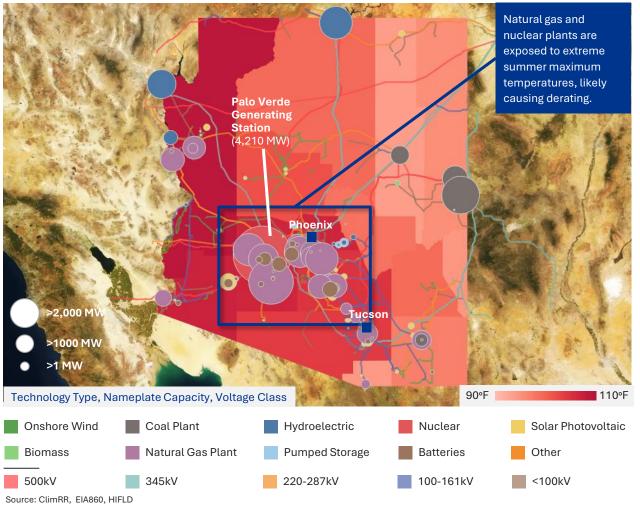
20 | Copyright © Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

Arizona Days Above 105 °F Distribution Assets (Population), Mid-Century [RCP-8.5]

KEY OBSERVATIONS

By mid-century, W/SW counties are exposed to a significant number of days > 105 °F annually, causing high asset utilization, derating, and potential failure.

Escalation from 2 days to 14 days of extreme heat exposure necessitates substation, transformer, and Dx line upgrades to mitigate potential failure and avoid derating.

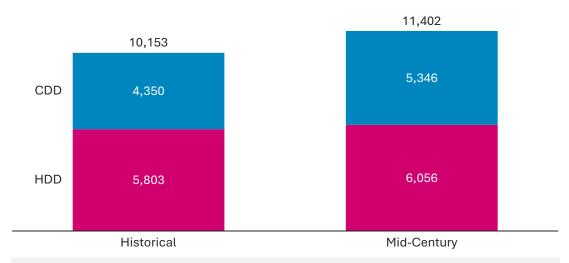


¹Population bubbles are continuous and therefore labels are approximate. ²EPRI Climate READi

AZ could explore Tx upgrades, grid-enhancing technologies, and expanded virtual power plant programs with storage to address significant extreme heat exposure

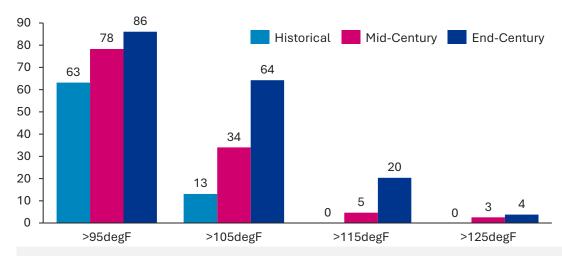
Arizona Summer Average Maximum Temperature (°F)

Generators, Mid-Century [RCP-8.5]


Key Highlights Analysis While once-through cooling is limited in AZ, thermoelectric generators that rely on other water-based cooling methods will **Thermoelectric** experience production derates as extreme heat raises average water temperatures. · Solar assets throughout the state are significantly exposed to extreme heat, contributing to **production derating** at temperatures above 77°F. AZ could consider expanding existing Solar/VPPs demand response and virtual power plant programs (including BESS) to combat derating of generators during high load. • A high density of Tx lines in Maricopa and western counties are highly exposed to extreme heat, which can cause capacity derates and line sag. AZ could consider GETs and Transmission reconductoring to address increasing extreme heat exposure. Undergrounding, though more expensive, remains a good option if there is multi-hazard exposure.

21 | Copyright © Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

Increasing exposure to extreme heat may contribute to derating, capacity violations, and substation failure, indicating the need for hardening in newly exposed portions of the state


Arizona Average Annual Cooling & Heating Degree Days (CDD & HDD) Population-Weighted by County [RCP-8.5]

KEY OBSERVATIONS

- Between historical and mid-century, the ratio of CDD to HDD increases, with the share of the average number of CDD jumping from about 75% to 88%.
- This results in increased summer asset utilization and degradation, but impacts to winter utilization remain unclear depending on heating electrification trends.
- Increasing HDD indicates that freezing and cold exposure persists to mid-century as extreme cold events may occur more frequently.

Arizona Average Annual Days Exceeding Daily Max Heat Index Thresholds Population-Weighted by County [RCP-8.5]

KEY OBSERVATIONS


- Increasing extreme heat exposure will cause an **increasing system utilization and accelerating degradation.**
- Almost 3x increase in days > 105 °F by mid-century poses a substantial risk to distribution substations, which can fail after two consecutive days above 104 °F without sufficient cooling time during nightly lows.
- Increasing state-wide averages indicates that new regions will be exposed to extreme heat and could be prioritized for hardening.

Average summer temperature maximums are projected to increase by mid-century, increasing the duration and magnitude of high system utilization

Arizona Average Seasonal Maximum Temperature (°F)

Population-Weighted by County [RCP-8.5]

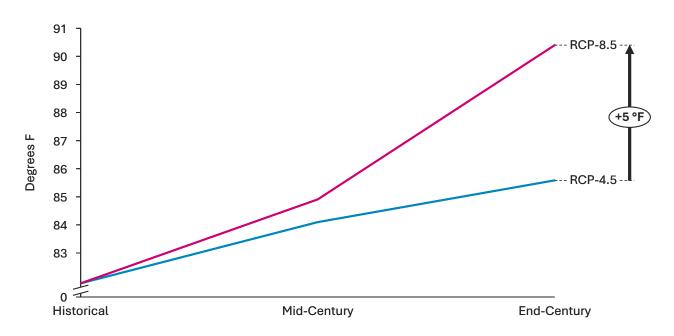
Key Highlights

Analysis

- · Heat risk increases most drastically in summer, with a 5 °F increase in the average seasonal max by mid-century.
- · This yields increases in peak load and likely contribute to derating and capacity violations for Tx and thermal generating units.

Shorter Shoulder Seasons

• Warming is generally less pronounced in shoulder seasons, although increased spring and autumn maximums could extend the duration of high system utilization and shorten maintenance windows.


Extreme Heat

 Average maximums reaching 104 °F by mid-century and 109 °F by end-century indicates an increasing frequency of extreme temperatures that can cause significant derating, capacity violations, and direct failure across all asset classes.

Average annual maximum temperatures are projected to increase under both warming scenarios, but the warming trajectories diverge by end-century

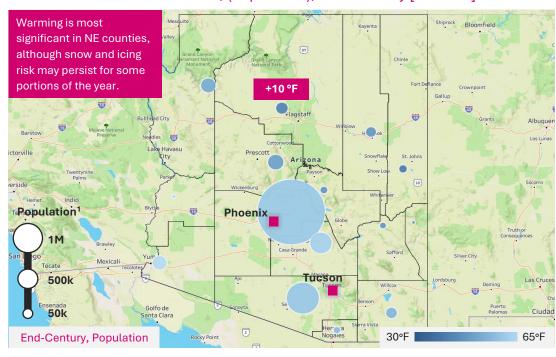
Arizona Average Annual Maximum Temperature(°F) Population-Weighted by County

Key Highlights	Analysis
RCP-4.5	 "Moderate" scenario: Emissions peak around 2040 and then slowly begin to decline. ⁴ Temperatures warm about 3.2 °F from a 2000 baseline. CO2 emissions plateau before falling midcentury, as energy use sharply declines and there is large scale reforestation.
RCP-8.5	 "Rapid growth" scenario: Emissions continue to rise throughout the twenty-first century. Temperatures warm about 6.6 °F from a 2000 baseline. CO2 emissions are three times higher than the present by end-century, with a large increase in methane emissions and continued fossil fuel use.
End-century Divergence	 Average annual maximum temperatures follow a similar trajectory under both warming scenarios up to mid-century. By end-century, RCP-8.5 yields average annual maximum temperatures 5° hotter than RCP-4.5.

Cold

Asset Analysis

AZ could consider concentrating adaptations addressing cold in NE counties, where extreme cold events could continue to occur despite general warming across the state


Arizona Average Annual Minimum Temperature (°F)
Distribution Assets, (Population) Historical

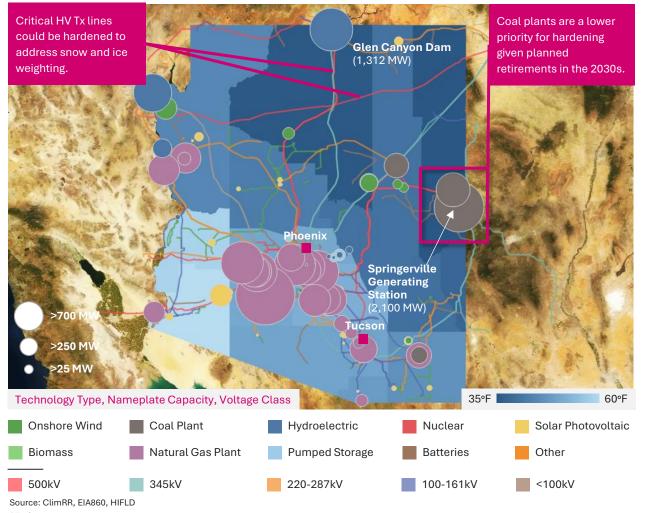
KEY OBSERVATIONS

- Cold exposure is generally concentrated in NE counties, where nearfreezing annual minimum temperatures pose a threat of asset icing/freezing, especially during nighttime hours in winter months.
- AZ could consider Dx pole upgrades and substation enclosures to combat snow loading and potential freezing in NE counties.

Arizona Average Annual Minimum Temperature (°F)
Distribution Assets, (Population), End-Century [RCP-8.5]

KEY OBSERVATIONS

 Climate projections cannot predict acute extreme events like polar vortices and winter storms, underrepresenting cold exposure.


Coconino County is exposed to average annual minimum temperatures of about 41 °F, indicting potential icing or snow exposure for Dx assets.

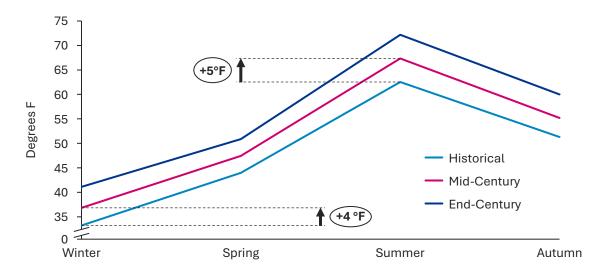
Despite limited cold exposure, AZ could consider resilience upgrades in highly vegetated NE counties to combat potential icing risk.

Arizona Average Annual Minimum Temperature (°F)

Generators, Mid-Century [RCP-8.5]

Key Highlights Analysis • Frazil ice formation and maloperation of spill gate motors can result in plant faults or production derates. Hydroelectric Coal plants in Apache County are exposed to extreme cold, which can cause a variety of plant shutdowns and freezing of coal Coal stockpiles. Wind plants in Coconino and Navajo Counties face cold exposure that can contribute to asset failure and ice throw. Wind

- High-voltage lines are highly exposed to cold in NE counties, particularly a tie line to NM and a line connecting Glen Canyon Dam to load centers.
- AZ could ensure that these structures are sufficiently are rated to handle the additional weight of snow and ice.

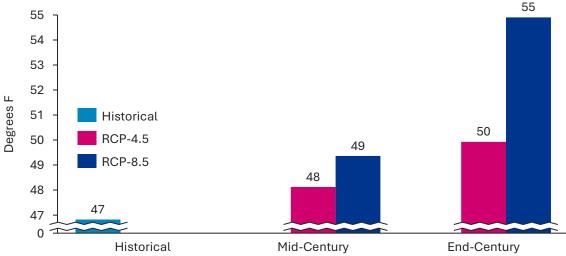


^{27 |} Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

Warming will generally decrease heating load, but extreme cold events may still occur with similar frequency given average annual minimum temperatures remain relatively constant

Arizona Average Seasonal Minimum Temperature (°F)

Population-Weighted by County [RCP-8.5]



KEY OBSERVATIONS

- Significant winter warming (+4 °F by mid-century) could decrease overall heating load, but the impact on electricity demand ultimately depends on the speed of heating electrification.
- Summer minimums remaining around 70 °F indicates that assets may be able to cool overnight, but this could continue to be monitored.
- Resilience upgrades like undergrounding, covered conductors, or cable upgrades can address heat and cold exposure simultaneously.

Arizona Average Annual Minimum Temperature (°F)

KEY OBSERVATIONS

- Only about 3 °F of annual minimum temperature warming (RCP-4.5) indicates that cold exposure could persist to end-century.
- Diverging temperature projections by end-century demonstrates projection uncertainty and the importance of continued monitoring.
- Regarding extreme cold, global climate models do not resolve for extreme cold events like polar vortexes, so assets could still face similar levels of exposure to cold-related failures.

Flood

Asset Analysis

Pluvial flooding due to excess surface runoff is lower risk for most AZ counties. Substation flooding mitigations could be explored for low-elevation assets on a ad hoc basis

Arizona Average Annual Surface Runoff (mm/year)
Historical [SSP5-8.5]

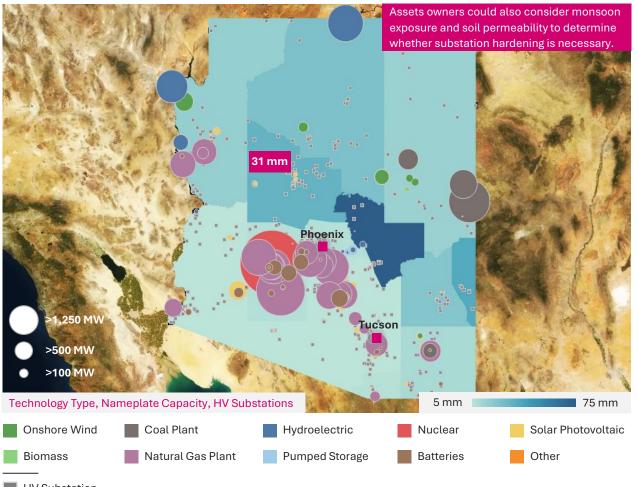
KEY OBSERVATIONS

- Most flood exposure lies in Gila County due to its high annual precipitation levels and mountainous terrain.
- Annual metrics do not capture the propensity of extreme precipitation events during monsoon season, underrepresenting exposure.
- Low soil permeability in AZ could increase the risk of pluvial flooding.

Arizona Average Annual Surface Runoff (mm/year)
End-Century [SSP5-8.5]

KEY OBSERVATIONS

 AZ could consider funding projects to fortify low-lying Dx substations in Gila and Yavapai Counties given flooding exposure.


Flood exposure is projected to increase ~15% by endcentury, posing a substantial threat to a significant volume of substations and distribution poles.

AZ could prioritize the fortification of high-voltage substations in Yavapai County given the high density of assets, though flood risk is generally low across the state.

Arizona Average Annual Surface Runoff (mm/year)

Generators, Mid-Century [SSP5-8.5]

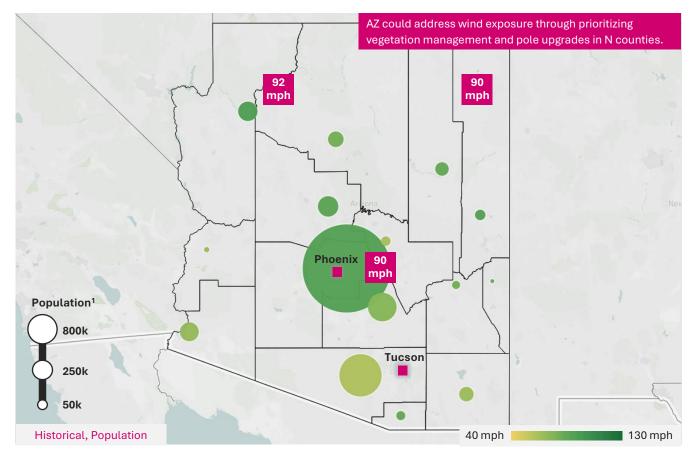
Key Highlights	Analysis	
5 Substation	 High-voltage substations will be exposed to pluvial flooding if elevation in low amongst surrounding topography. Significant pockets of HV substations could be exposed to flooding in Yavapai and Greenlee Counties and could be considered for elevation or related hardening. 	
	 Flooding causes ingress/egress complications by washing out access roads, contributing to restoration issues. 	
Restoration	 Flooding can affect on-site buildings or facilities, making it more difficult to maintain adequate staffing for oversight and restoration. 	

- Most generator sites are not exposed to significant flood risk.
- A handful of solar plants in Yavapai County could be exposed to flooding, which can inundate inverters and other ground-level equipment, contributing to asset failure.

HV Substation

Source: ClimRR, EIA860, HIFLD

31 | Copyright © Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information.


Wind

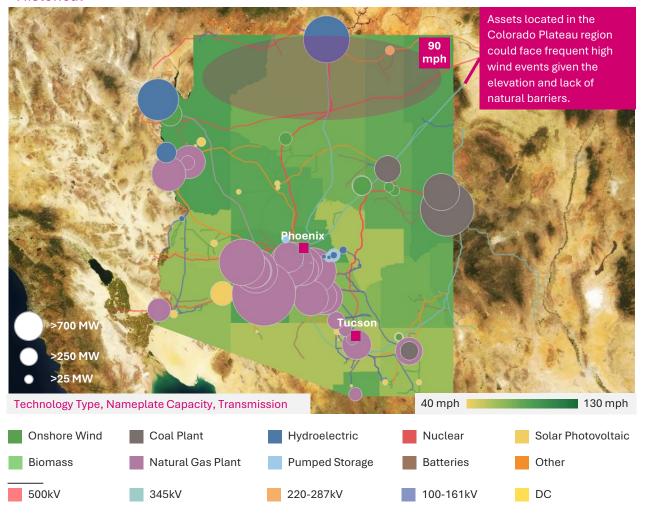
Asset Analysis

Vegetation management and Dx pole reinforcement/replacement could be prioritized for remote customers in northern counties given high vegetation.

Arizona 100-year Wind Speed (mph)

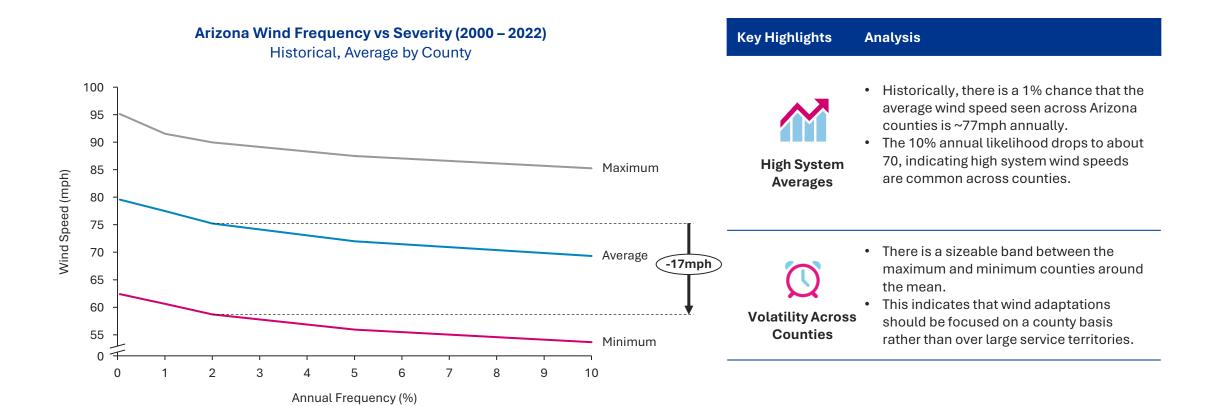
Historical

Key Highlights	Analysis
Distribution	 Given weak climate signals, wind speeds are derived using historical data and do not vary at high spatial resolution. Rather than targeted investments, wind exposure should be addressed through upgraded design standards across a utility service territory.
(((b))) Northern Counties	 Wind exposure is generally highest in northern counties given higher elevations. AZ could consider Dx pole reinforcements and vegetation management in rural areas of N counties given dense tree cover.
	 Maricopa County has a population of approximately 4.5M and 100-year return value of 90 mph, indicating a high exposure area for Dx assets.
Maricopa County	 Explore suburban/rural areas within county where undergrounding is less common, but significant Dx assets remain.



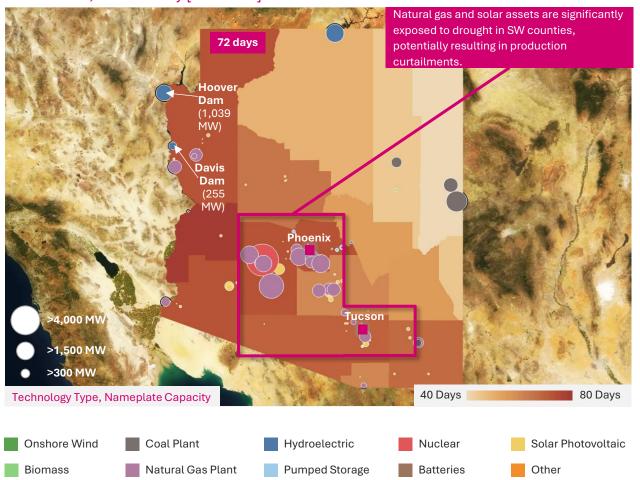
Transmission lines in Maricopa County and the Colorado Plateau region could be prioritized for structure reinforcement or vegetation management to address high wind exposure

Arizona 100-year Wind Speed (mph)


Historical

Key Highlights	Analysis
Transmission	 A crucial transmission juncture in Maricopa County is highly exposed AZ could consider reinforcing Tx structures in Colorado Plateau region of the state given the high volume of exposed lines and their criticality in connecting generators to load in other counties.
Solar	 A pocket of solar farms in in Yavapai and Mohave Counties are exposed to high return values >90 mph. Depending on OEM, solar panels are only rated to 90 mph, indicating need for rack reinforcement and vegetation management.
Wind	 Wind farms cutout speeds can vary between 45-70 mph, indicating that in high wind speed events, there the turbines stop producing. Wind farms in Mohave and Navajo Counties are exposed to 100-year return values significantly higher than typical cutout thresholds, diminishing supply during extreme wind events.

Historically, there is a 1% chance that the average wind speed seen across Arizona counties is ~77 mph annually.

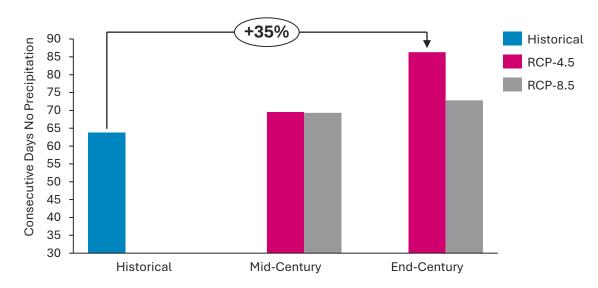

Drought

Asset Analysis

AZ could consider forecasting hydro output using climate-adjusted inputs and exploration of modeling thermoelectric supply during drought season

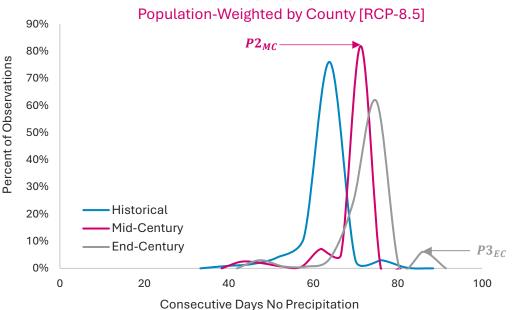
Arizona Consecutive Days No Precipitation

Generators, Mid-Century [RCP5-8.5]



Key Highlights	Analysis
A Hydroelectric	 A string of hydroelectric plants along the Colorado River in Mohave County are exposed to near peak state-wide drought levels. Asset owners and grid operators could be forecasting long-term production from these hydro facilities with climate-adjusted inputs, as drought exposure in Mohave County is projected to increase 12% by end-century.
Natural Gas	 In arid conditions, air intakes for CCGTs and CTs can clog and degrade due to dust and sand particles, decreasing efficiency and longevity of the generator. Lack of water availability can reduce natural gas cooling ability, resulting in power production curtailments.
Renewables	 Drought conditions cause dust buildup on solar panels, hurting capacity factors. In areas that also have high wildfire exposure, panel cleaning projects address two hazards simultaneously.

Drought exposure is generally projected to increase over time, but the magnitude of the change could vary widely depending on the warming scenario that is most closely followed


Arizona Average Annual Consecutive Days with No Precipitation Population-Weighted by County [RCP 4.5, RCP-8.5]

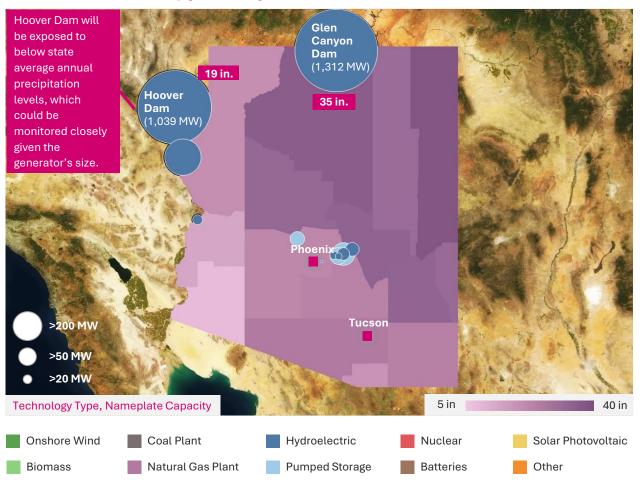
KEY OBSERVATIONS

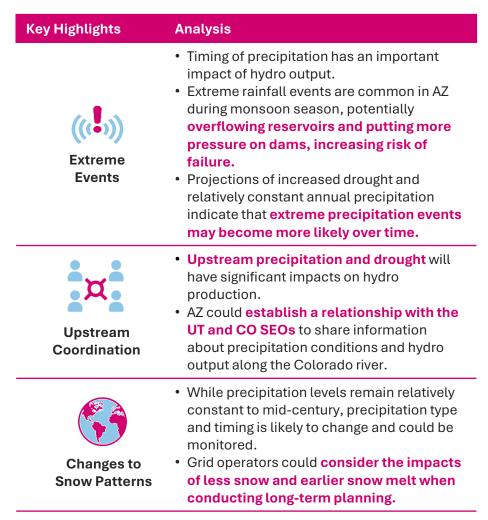
- Projections indicate a mild to moderate increase in drought exposure.
- **Drought exposure increases ~35% by end-century** (under RCP-4.5), contributing to potential asset cooling failures and reduced hydroelectric generation.
- Higher drought exposure for RCP-4.5 than RCP-8.5 demonstrates that drought risk does not scale linearly with temperature and could be monitored closely over time, especially by hydroelectric asset owners.

Arizona Average Consecutive Days with No Precipitation Statistical Distribution

KEY OBSERVATIONS

- Rightward shift of both the mid-century and end-century curves represents escalating drought exposure over time under RCP-8.5.
- P3 of the end-century curve represents the development of a small pocket of the state exposed to about 90 cons. days w/o precipitation.
- The height of P2 in the mid-century curve indicates drought exposure becoming more concentrated around 70 days compared to historical and end-century, which are less concentrated.

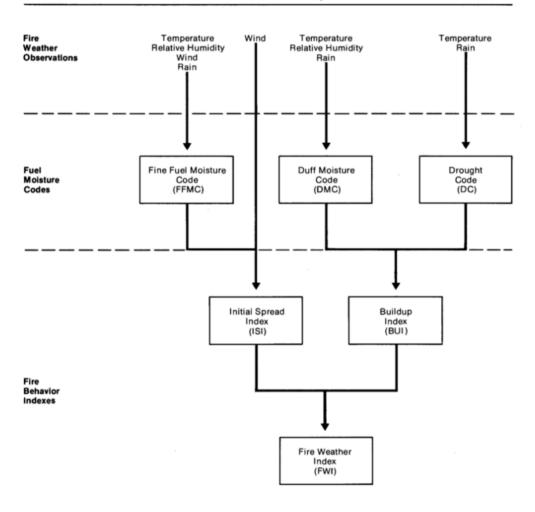

Precipitation


Asset Analysis

Precipitation levels stay relatively constant, but AZ could consider the impacts of extreme precipitation events, upstream conditions, and changing snow patterns on hydro output

Arizona Annual Max Precipitation (in)

Generators, Mid-Century [RCP5-8.5]


Source: ClimRR, EIA860, HIFLD

40 | Copyright @ Baringa Partners LLP 2024. All rights reserved. This document is subject to contract and contains confidential and proprietary information

Appendix

Fire Weather Index synthesizes weather and moisture content data into a normalized value representing the danger of fire spread once ignition has occurred.

Structure of the Canadian Forest Fire Weather Index System

KEY TAKEAWAYS

- FWI is a useful metric for evaluating weather-based conditions that heighten the danger of wildfire spread once ignition has occurred.
- Initial Spread Index: Measures the expected rate of fire spread, based on wind speed and moisture content of fine fuels/forest litter (Fine Fuel Moisture Code).
- Buildup Index: Measures the total amount of forest fuel available for consumption, based on the moisture content of intermediate organic layers, such as decomposing plant matter (Duff Moisture Code), and the moisture content of deep organic layers and soils, which corresponds to drought measures (Drought Code).
- Daily FWI values were calculated using readings from Argonne's downscaled 12km climate data and averaged annually or seasonally across RCP-4.5 and RCP-8.5.
- Percentiles (below) were calculated based on FWI values across all
 12km grid cells in the contiguous U.S.

FWI Class	Percentile range in historical period	FWI values in Class
Low	0–25 th percentile	0–9 FWI
Medium	25–50 th percentile	9–21 FWI
High	50–75 th percentile	21–34 FWI
Very High	75–90 th percentile	34–39 FWI
Extreme	90–98 th percentile	39–53 FWI
Very Extreme	Above 98th percentile	Above 53 FWI

